首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Endured, low‐cost, and high‐performance flexible perovskite solar cells (PSCs) featuring lightweight and mechanical flexibility have attracted tremendous attention for portable power source applications. However, flexible PSCs typically use expensive and fragile indium–tin oxide as transparent anode and high‐vacuum processed noble metal as cathode, resulting in dramatic performance degradation after continuous bending or thermal stress. Here, all‐carbon‐electrode‐based flexible PSCs are fabricated employing graphene as transparent anode and carbon nanotubes as cathode. All‐carbon‐electrode‐based flexible devices with and without spiro‐OMeTAD (2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene) hole conductor achieve power conversion efficiencies (PCEs) of 11.9% and 8.4%, respectively. The flexible carbon‐electrode‐based solar cells demonstrate superior robustness against mechanical deformation in comparison with their counterparts fabricated on flexible indium–tin oxide substrates. Moreover, all carbon‐electrode‐based flexible PSCs also show significantly enhanced stability compared to the flexible devices with gold and silver cathodes under continuous light soaking or 60 °C thermal stress in air, retaining over 90% of their original PCEs after 1000 h. The promising durability and stability highlight that flexible PSCs are fully compatible with carbon materials and pave the way toward the realization of rollable and low‐cost flexible perovskite photovoltaic devices.  相似文献   

2.
Organolead halide perovskite solar cells (PSC) are arising as promising candidates for next‐generation renewable energy conversion devices. Currently, inverted PSCs typically employ expensive organic semiconductor as electron transport material and thermally deposited metal as cathode (such as Ag, Au, or Al), which are incompatible with their large‐scale production. Moreover, the use of metal cathode also limits the long‐term device stability under normal operation conditions. Herein, a novel inverted PSC employs a SnO2‐coated carbon nanotube (SnO2@CSCNT) film as cathode in both rigid and flexible substrates (substrate/NiO‐perovskite/Al2O3‐perovskite/SnO2@CSCNT‐perovskite). Inverted PSCs with SnO2@CSCNT cathode exhibit considerable enhancement in photovoltaic performance in comparison with the devices without SnO2 coating owing to the significantly reduced charge recombination. As a result, a power conversion efficiency of 14.3% can be obtained on rigid substrates while the flexible ones achieve 10.5% efficiency. More importantly, SnO2@CSCNT‐based inverted PSCs exhibit significantly improved stability compared to the standard inverted devices made with silver cathode, retaining over 88% of their original efficiencies after 550 h of full light soaking or thermal stress. The results indicate that SnO2@CSCNT is a promising cathode material for long‐term device operation and pave the way toward realistic commercialization of flexible PSCs.  相似文献   

3.
For realizing flexible perovskite solar cells (PSCs), it is important to develop low‐temperature processable interlayer materials with excellent charge transporting properties. Herein, a novel polymeric hole‐transport material based on 1,4‐bis(4‐sulfonatobutoxy)benzene and thiophene moieties (PhNa‐1T) and its application as a hole‐transport layer (HTL) material of high‐performance inverted‐type flexible PSCs are introduced. Compared with the conventionally used poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), the incorporation of PhNa‐1T into HTL of the PSC device is demonstrated to be more effective for improving charge extraction from the perovskite absorber to the HTL and suppressing charge recombination in the bulk perovskite and HTL/perovskite interface. As a result, the flexible PSC using PhNa‐1T achieves high photovoltaic performances with an impressive power conversion efficiency of 14.7%. This is, to the best of our knowledge, among the highest performances reported to date for inverted‐type flexible PSCs. Moreover, the PhNa‐1T‐based flexible PSC shows much improved stability under an ambient condition than PEDOT:PSS‐based PSC. It is believed that PhNa‐1T is a promising candidate as an HTL material for high‐performance flexible PSCs.  相似文献   

4.
Carbon electrode are a low‐cost and great potential strategy for stable perovskite solar cells (PSCs). However, the efficiency of carbon‐based PSCs lags far behind compared with that of state‐of‐the‐art PSCs. The poor interface contact between the carbon electrode and the underlying layer dominates the performance loss of the reported carbon‐based PSCs. In this respect, a sort of self‐adhesive macroporous carbon film is developed as counter electrode by a room‐temperature solvent‐exchange method. Via a simple press transfer technique, the carbon film can form excellent interface contact with the underlying hole transporting layer, remarkably beneficial to interface charge transfer. A power conversion efficiency of up to 19.2% is obtained for mesoporous‐structure PSCs, which is the best achieved for carbon‐based PSCs. Moreover, the device exhibits greatly improved long‐term stability. It retains over 95% of the initial efficiency after 1000 h storage under ambient atmosphere. Furthermore, after aging for 80 h under illumination and maximum power point in nitrogen atmosphere, the carbon‐based PSC retains over 94% of its initial performance.  相似文献   

5.
With the power conversion efficiencies of perovskite solar cells (PSCs) exceeding 25%, the PSCs are a step closer to initial industrialization. Prior to transferring from laboratory fabrication to industrial manufacturing, issues such as scalability, material cost, and production line compatibility that significantly impact the manufacturing remain to be addressed. Here, breakthroughs on all these fronts are reported. Carbon-based PSCs with architecture fluorine doped tin oxide (FTO)/electron transport layer/perovskite/carbon, that eliminate the need for the hole transport layer and noble metal electrode, provide ultralow-cost configuration. This PSC architecture is manufactured using a scalable and industrially compatible electrospray (ES) technique, which enables continuous printing of all the cell layers. The ES deposited electron transport layer and perovskite layer exhibit properties comparable to that of the laboratory-scale spin coating method. The ES deposited carbon electrode layer exhibits superior conductivity and interfacial microstructure in comparison to films synthesized using the conventional doctor blading technique. As a result, the fully ES printed carbon-based PSCs show a record 14.41% power conversion efficiency, rivaling the state-of-the-art hole transporter-free PSCs. These results will immediately have an impact on the scalable production of PSCs.  相似文献   

6.
Perovskite solar cells (PSCs) are demonstrating great potential to compete with second generation photovoltaics. Nevertheless, the key issue hindering PSCs full exploitation relies on their stability. Among the strategies devised to overcome this problem, the use of carbon nanostructures (CNSs) as hole transporting materials (HTMs) has given impressive results in terms of solar cells stability to moisture, air oxygen, and heat. Here, the use of a HTM based on a poly(3‐hexylthiophene) (P3HT) matrix doped with organic functionalized single walled carbon nanotubes (SWCNTs) and reduced graphene oxide in PSCs is proposed to achieve higher power conversion efficiencies (η = 11% and 7.3%, respectively) and prolonged shelf‐life stabilities (480 h) in comparison with a benchmark PSC fabricated with a bare P3HT HTM (η = 4.3% at 480 h). Further endurance test, i.e., up to 3240 h, has shown the failure of all the PSCs based on undoped P3HT, while, on the contrary, a η of ≈8.7% is still detected from devices containing 2 wt% SWCNT‐doped P3HT as HTM. The increase in photovoltaic performances and stabilities of the P3HT‐CNS‐based solar cell, with respect to the standard P3HT‐based one, is attributed to the improved interfacial contacts between the doped HTM and the adjacent layers.  相似文献   

7.
Organometallic halide perovskite films with good surface morphology and large grain size are desirable for obtaining high‐performance photovoltaic devices. However, defects and related trap sites are generated inevitably at grain boundaries and on surfaces of solution‐processed polycrystalline perovskite films. Seeking facial and efficient methods to passivate the perovskite film for minimizing defect density is necessary for further improving the photovoltaic performance. Here, a convenient strategy is developed to improve perovskite crystallization by incorporating a 2D polymeric material of graphitic carbon nitride (g‐C3N4) into the perovskite layer. The addition of g‐C3N4 results in improved crystalline quality of perovskite film with large grain size by retarding the crystallization rate, and reduced intrinsic defect density by passivating charge recombination centers around the grain boundaries. In addition, g‐C3N4 doping increases the film conductivity of perovskite layer, which is beneficial for charge transport in perovskite light‐absorption layer. Consequently, a champion device with a maximum power conversion efficiency of 19.49% is approached owing to a remarkable improvement in fill factor from 0.65 to 0.74. This finding demonstrates a simple method to passivate the perovskite film by controlling the crystallization and reducing the defect density.  相似文献   

8.
Organic–inorganic hybrid perovskites have reached an unprecedented high efficiency in photovoltaic applications, which makes the commercialization of perovskite solar cells (PSCs) possible. In the past several years, particular attention has been paid to the stability of PSC devices, which is a critical issue for becoming a practical photovoltaic technology. In particular, the interface-induced degradation of perovskites should be the dominant factor causing poor stability. Here, imidazole bromide functionalized graphene quantum dots (I-GQDs) are demonstrated to regulate the interface between the electron transport layer (ETL) and formamidinium lead iodide (FAPbI3) perovskite layer. The incorporation of I-GQDs not only reduces the interface defects for achieving a better energy level alignment between ETL and perovskite, but also improves the film quality of FAPbI3 perovskite including enlarged grain size, lower trap density, and a longer carrier lifetime. Consequently, the planar FAPbI3 PSCs with I-GQDs regulation achieve a high efficiency of 22.37% with enhanced long-term stability.  相似文献   

9.
Perovskite solar cells (PSCs) are considered one of the most promising next‐generation examples of high‐tech photovoltaic energy converters, as they possess an unprecedented power conversion efficiency with low cost. A typical high‐performance PSC generally contains a perovskite active layer sandwiched between an electron‐transport layer (ETL) and a hole‐transport layer (HTL). The ETL and HTL contribute to the charge extraction in the PSC. However, these additional two layers complicate the manufacturing process and raise the cost. To extend this technology for commercialization, it is highly desired that the structure of PSCs is further simplified without sacrificing their photovoltaic performances. Thus, ETL‐free or/and HTL‐free PSCs are developed and attract more and more interest. Herein, the commonly used methods in reducing the defect density and optimizing the energy levels in conventional PSCs in order to simplify their structures are summarized. Then, the development of diverse ETL‐free or/and HTL‐free PSCs is discussed, with the PSCs classified, including their working principles, implemented technologies, remaining challenges, and future perspectives. The aim is to redirect the way toward low‐cost and high‐performance PSCs with the simplest possible architecture.  相似文献   

10.
Cs/FA/MA triple cation perovskite films have been well developed in the antisolvent dripping method, attributable to its outstanding photovoltaic and stability performances. However, a facile and effective strategy is still lacking for fabricating high‐quality large‐grain triple cation perovskite films via sequential deposition method a, which is one of the key technologies for high efficiency perovskite solar cells. To address this issue, a δ‐CsPbI3 intermediate phase growth (CsPbI3‐IPG) assisted sequential deposition method is demonstrated for the first time. The approach not only achieves incorporation of controllable cesium into (FAPbI3)1–x(MAPbBr3)x perovskite, but also enlarges the perovskite grains, manipulates the crystallization, modulates the bandgap, and improves the stability of final perovskite films. The photovoltaic performances of the devices based on these Cs/FA/MA perovskite films with various amounts of the δ‐CsPbI3 intermediate phase are investigated systematically. Benefiting from moderate cesium incorporation and intermediate phase‐assisted grain growth, the optimized Cs/FA/MA perovskite solar cells exhibit a significantly improved power conversion efficiency and operational stability of unencapsulated devices. This facile strategy provides new insights into the compositional engineering of triple or quadruple cation perovskite materials with enlarged grains and superior stability via a sequential deposition method.  相似文献   

11.
The control of film morphology is crucial in achieving high‐performance perovskite solar cells (PSCs). Herein, the crystals of the perovskite films are reconstructed by post‐treating the MAPbI3 devices with methylamine gas, yielding a homogeneous nucleation and crystallization of the perovskite in the triple mesoscopic inorganic layers structured PSCs. As a result, a uniform, compact, and crystalline perovskite layer is obtained after the methylamine gas post‐treatment, yielding high power conversion efficiency (PCE) of 15.26%, 128.8% higher than that of the device before processing. More importantly, this post‐treatment process allows the regeneration of the photodegraded PSCs via the crystal reconstruction and the PCE can recover to 91% of the initial value after two cycles of the photodegradation‐recovery process. This simple method allows for the regeneration of perovskite solar cells on site without reconstruction or replacing any components, thus prolonging the service life of the perovskite solar cells and distinguishing from any other photovoltaic devices in practice.  相似文献   

12.
Halide perovskites are one of the ideal photovoltaic materials for constructing flexible solar devices due to relatively high efficiencies for low‐temperature solution‐processed devices. However, the overwhelming majority of flexible perovskite solar cells are produced using spin coating, which represents a major hurdle for upscaling. Here, a scalable approach is reported to fabricate efficient and robust flexible perovskite solar cells on a polymer substrate. Thiourea is introduced into perovskite precursor solution to modulate the crystal growth, resulting in dense and uniform perovskite thin films on rough surfaces. As a decisive step, a cascade energy alignment is realized for the hole extraction layer by rationally designing a bilayer interface comprised of PEDOT:PSS/PTAA with a distinct offset in the highest occupied molecular orbital levels, enabling markedly enhanced charge extraction and spectral response. An efficiency as high as 19.41% and a record fill factor up to 81% are achieved for flexible perovskite devices processed by a scalable printing method. Equally important, the bilayer interface reinforces the bendability of the indium tin oxide substrate, leading to enhanced mechanical robustness of the flexible devices. These results underpin the importance of morphology control and interface design in constructing high‐performance flexible perovskite solar cells.  相似文献   

13.
Organic light emitting diodes (OLEDs) employing organic thin-film based emitters have attracted tremendous attention due to their widespread applications in lighting and as displays in mobile devices and televisions. The novel thin-film photovoltaic techniques using organic or organic–inorganic hybrid materials such as organic photovoltaics (OPVs) and perovskite solar cells (PSCs) have become emerging competitive candidates with regard to the traditional photovoltaic techniques on account of high-efficiency, low-cost, and simple manufacturing processing properties. However, OLEDs, OPVs, and PSCs are vulnerable to the undesired degradation induced by moisture and oxygen. To afford long-term stability, a robust encapsulation technique by employing materials and structures that possess high barrier performance against oxygen and moisture must be explored and employed to protect these devices. Herein, the recent progress on specific encapsulation materials and techniques for three types of devices on the basis of fundamental understanding of device stability is reviewed. First, their degradation mechanisms, as well as, influencing factors are discussed. Then, the encapsulation technologies and materials are classified and discussed. Moreover, the advantages and disadvantages of various encapsulation technologies and materials coupled with their encapsulation applications in different devices are compared. Finally, the ongoing challenges and future perspectives of encapsulation frontier are provided.  相似文献   

14.
3D organic–inorganic lead halide perovskites have shown great potential in efficient photovoltaic devices. However, the low stability of the 3D perovskite layer and random arrangement of the perovskite crystals hinder its commercialization road. Herein, a highly oriented 2D@3D ((AVA)2PbI4@MAPbI3) perovskite structure combining the advantages of both 2D and 3D perovskite is fabricated through an in situ route. The highest power conversion efficiency (PCE) of 18.0% is observed from a 2D@3D perovskite solar cell (PSC), and it also shows significantly enhanced device stability under both inert (90% of initial PCE for 32 d) and ambient conditions (72% of initial PCE for 20 d) without encapsulation. The high efficiency of 18.0% and nearly twofold improvement of device stability in ambient compared with pure 3D PSCs confirm that such 2D@3D perovskite structure is an effective strategy for high performance and increasing stability and thus will enable the timely commercialization of PSCs.  相似文献   

15.
To capture the essence of the rapid progress in optical engineering exploited in high‐performance polymer solar cells (PSCs), a comprehensive overview focusing on recent developments and achievements in PSC electrode engineering is provided in this review. To date, various kinds of electrode materials and geometries are exploited to enhance light‐trapping in devices through distinct optical strategies. In addition to the widely used nanostructured electrodes that induce plasmonic‐enhanced light absorption, planar ultra‐thin metal films also have attracted significant attention due to their remarkably reflective transparent properties that beget efficient optical microcavities. These microcavities confine incident light with resonant frequencies between two reflective electrodes due to optically coherent interference, boosting the light absorption of thin‐film PSCs while maintaining efficient charge dissociation and extraction. After reviewing the challenges in developing high‐performance microcavity‐enhanced PSCs (MCPSCs), we discuss strategies to improve MCPSC performance further to showcase the potential of harnessing microcavity resonance effects in thin‐film PSCs.  相似文献   

16.
Multi-walled carbon nanotubes (MWCNTs) were functionalized noncovalently by lysozyme (LZ), cetyl pyridinium chloride (CPC), deoxycholate sodium (NaDC) and polyethylene glycol octylphenol ether (Triton X-100), respectively in this study. Four different kinds of functionalized MWCNTs were employed into dye-sensitized solar cell (DSSC) as the Pt-free counter electrode (CE). The correlation between the dispersion of MWCNTs and electrochemical active area of CE and the photovoltaic characteristic of DSSC were investigated. Among these four DSSCs, the one with Triton X-100 functionalized MWCNTs showed the best energy conversion efficiency of 2.69% which is 11.16% higher than the DSSC using pristine MWCNTs CE (2.42%), yet the efficiency is lower than the DSSC using Pt CE. While the DSSC with CPC, NaDC and LZ functionalized MWCNTs as the CE showed inferior the photovoltaic conversion efficiency than the DSSC using pristine MWCNTs CE. On analysis of the photovoltaic performance of DSSC and the dispersion of MWCNTs and electrochemical active area of CE, it is found that the high efficiency of the DSSC is associated with the good dispersion of MWCNTs and large electrochemical active area of the counter electrode material.  相似文献   

17.
Developing efficient and cost effective photoanode and counter electro materials have been a persistent objective by a wide community for efficient, cost effective and stable dye-sensitized-solar cells (DSSCs). We have developed a unique and inexpensive way of co-electroplating-annealing method to synthesize metal oxides and employed it to prepare ZnO material on top of doctor bladed TiO2 as photoanode and CuO on top of reduced graphene oxide (RGO) as counter electrode. By sandwiching these two electrodes with I-/I3 redox couple in-between we have shown the improvement of photovoltaic properties with ZnO barrier layer using Pt or cost effective CuO/RGO counter electrodes (CEs). This paper provides a comprehensive guide to prepare those electrodes cost effectively and fabricate metal oxide sandwiched DSSCs providing up to 6.91% power conversion efficiency with 26.5% enhancement compared to the conventional DSSCs with TiO2 photoanode and Pt CE under AM1.5 simulated solar light. This work also addresses the reduction of fabrication cost of the cells to make them more economically viable as it is  相似文献   

18.
Tandem solar cells (TSCs) comprising stacked narrow‐bandgap and wide‐bandgap subcells are regarded as the most promising approach to break the Shockley–Queisser limit of single‐junction solar cells. As the game‐changer in the photovoltaic community, organic–inorganic hybrid perovskites became the front‐runner candidate for mating with other efficient photovoltaic technologies in the tandem configuration for higher power conversion efficiency, by virtue of their tunable and complementary bandgaps, excellent photoelectric properties, and solution processability. In this review, a perspective that critically dilates the progress of perovskite material selection and device design for perovskite‐based TSCs, including perovskite/silicon, perovskite/copper indium gallium selenide, perovskite/perovskite, perovskite/CdTe, and perovskite/GaAs are presented. Besides, all‐inorganic perovskite CsPbI3 with high thermal stability is proposed as the top subcell in TSCs due to its suitable bandgap of ≈1.73 eV and rapidly increasing efficiency. To minimize the optical and electrical losses for high‐efficiency TSCs, the optimization of transparent electrodes, recombination layers, and the current‐matching principles are highlighted. Through big data analysis, wide‐bandgap perovskite solar cells with high open‐circuit voltage (Voc) are in dire need in further study. In the end, opportunities and challenges to realize the commercialization of TSCs, including long‐term stability, area upscaling, and mitigation of toxicity, are also envisioned.  相似文献   

19.
Recently, perovskite solar cells (PSC) with high power‐conversion efficiency (PCE) and long‐term stability have been achieved by employing 2D perovskite layers on 3D perovskite light absorbers. However, in‐depth studies on the material and the interface between the two perovskite layers are still required to understand the role of the 2D perovskite in PSCs. Self‐crystallization of 2D perovskite is successfully induced by deposition of benzyl ammonium iodide (BnAI) on top of a 3D perovskite light absorber. The self‐crystallized 2D perovskite can perform a multifunctional role in facilitating hole transfer, owing to its random crystalline orientation and passivating traps in the 3D perovskite. The use of the multifunctional 2D perovskite (M2P) leads to improvement in PCE and long‐term stability of PSCs both with and without organic hole transporting material (HTM), 2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenyl‐amine)‐9,9′‐spirobifluorene (spiro‐OMeTAD) compared to the devices without the M2P.  相似文献   

20.
Perovskite solar cells typically use TiO2 as charge extracting materials, which reduce the photostability of perovskite solar cells under illumination (including ultraviolet light). Simultaneously realizing the high efficiency and photostability, it is demonstrated that the rationally designed iron(III) oxide nanoisland electrodes consisting of discrete nanoislands in situ growth on the compact underlayer can be used as compatible and excellent electron extraction materials for perovskite solar cells. The uniquely designed iron(III) oxide electron extraction layer satisfies the good light transmittance and sufficient electron extraction ability, resulting in a promising power conversion efficiency of 18.2%. Most importantly, perovskite solar cells fabricated with iron(III) oxide show a significantly improved UV light and long‐term operation stabilities compared with the widely used TiO2‐based electron extraction material, owing to the low photocatalytic activity of iron(III) oxide. This study highlights the potential of incorporating new charge extraction materials in achieving photostable and high efficiency perovskite photovoltaic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号