首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
缪新  李航锋  张运海  王发民  施辛 《红外与激光工程》2021,50(2):20200206-1-20200206-10
在皮肤反射式共聚焦显微成像过程中,针对MEMS振镜二维扫描引起的共聚焦图像畸变,开展了光束偏转理论分析,得出了投影面扫描图像的具体形状表征,理论畸变图像与真实畸变图像一致,明确了畸变机理,提出一种有效的畸变校正算法,实现对图像二维畸变的校正。首先记录原始光栅畸变图像,然后基于Hessian矩阵提取光栅中心线,拾取特征点并设置基准参考线,通过基于最小二乘法的7次多项式插值法标定二维方向像素畸变校正量,采用加权平均法填补间隙像素灰度值,最终实现图像畸变校正。利用网格畸变测试靶实验得出7次多项式插值后的校正决定系数最高、均方根误差值最低,整幅512行图像在7次多项式插值后最优行数占379行,比例为74%,通过残差分析,二维方向上残差最大为4个像素,最小为0个像素,平均为1.15个像素,校正结果较为精确。皮肤在体实时成像实验显示,图像畸变校正后组织结构特征更加真实准确,表明这种校正算法有效可行,有助于皮肤疾病的准确诊断。  相似文献   

2.
Using three-dimensional rotational X-ray angiography (3DRA), three-dimensional (3-D) information of the vasculature can be obtained prior to endovascular interventions. However, during interventions, the radiologist has to rely on fluoroscopy images to manipulate the guide wire. In order to take full advantage of the 3-D information from 3DRA data during endovascular interventions, a method is presented that yields an integrated display of the position of the guide wire and vasculature in 3-D. The method relies on an automated method that tracks the guide wire simultaneously in biplane fluoroscopy images. Based on the calibrated geometry of the C-arm, the 3-D guide-wire position is determined and visualized in the 3-D coordinate system of the vasculature. The method is evaluated in an intracranial anthropomorphic vascular phantom. The influence of the angle between projections, distortion correction of the projection images, and accuracy of geometry knowledge on the accuracy of 3-D guide-wire reconstruction from biplane images is determined. If the calibrated geometry information is used and the images are corrected for distortion, a mean distance to the reference standard of 0.42 mm and a tip distance of 0.65 mm is found, which means that accurate guide-wire reconstruction from biplane images can be performed.  相似文献   

3.
The recovery of the three-dimensional (3-D) path of the transducer used during an intravascular ultrasound (IVUS) examination is of primary importance to assess the exact 3-D shape of the vessel under study. Traditionally, the reconstruction is done by simply stacking the images during the pullback, or more recently using biplane angiography to recover the vessel curvature. In this paper, we explain, how single-plane angiography can be used with two projection models, to perform this task. Two types of projection geometry are analyzed: weak-perspective and full-perspective. In weak-perspective projection geometry, the catheter path can be reconstructed without prior transducer depth information. With full-perspective projection geometry, precise depth location of reference points are needed in order to minimize the error of the recovered transducer angle of incidence. The transducer angulation reconstruction is based on the foreshortening effect as seen from the X-ray images. By comparing the measured to the true transducer length, we are able to get its incidence angle. The transducer trajectory is reconstructed by stitching together the different estimated angulations obtained from each image in a cineangiogram sequence. The method is described and validated on two helical vessel phantoms, giving on average a reconstructed path that is less than 2 mm distant from the true path when using full-perspective projection.  相似文献   

4.
This paper reports on a method for left ventricle three-dimensional (3-D) reconstruction from two orthogonal ventriculograms. The proposed algorithm is voxel-based and takes into account the conical projection geometry associated with the biplane image acquisition equipment. The reconstruction process starts with an initial ellipsoidal approximation derived from the input ventriculograms. This model is subsequently deformed in such a way as to match the input projections. To this end, the object is modeled as a 3-D Markov-Gibbs random field, and an energy function is defined so that it includes one term that models the projections compatibility and another one that includes the space-time regularity constraints. The performance of this reconstruction method is evaluated by considering the reconstruction of mathematically synthesized phantoms and two 3-D binary databases from two orthogonal synthesized projections. The method is also tested using real biplane ventriculograms. In this case, the performance of the reconstruction is expressed in terms of the projection error, which attains values between 9.50% and 11.78 % for two biplane sequences including a total of 55 images.  相似文献   

5.
A three-dimensional (3-D) method for tracking the coronary arteries through a temporal sequence of biplane X-ray angiography images is presented. A 3-D centerline model of the coronary vasculature is reconstructed from a biplane image pair at one time frame, and its motion is tracked using a coarse-to-fine hierarchy of motion models. Three-dimensional constraints on the length of the arteries and on the spatial regularity of the motion field are used to overcome limitations of classical two-dimensional vessel tracking methods, such as tracking vessels through projective occlusions. This algorithm was clinically validated in five patients by tracking the motion of the left coronary tree over one cardiac cycle. The root mean square reprojection errors were found to be submillimeter in 93% (54/58) of the image pairs. The performance of the tracking algorithm was quantified in three dimensions using a deforming vascular phantom. RMS 3-D distance errors were computed between centerline models tracked in the X-ray images and gold-standard centerline models of the phantom generated from a gated 3-D magnetic resonance image acquisition. The mean error was 0.69 (+/- 0.06) mm over eight temporal phases and four different biplane orientations.  相似文献   

6.
Three-dimensional (3-D) reconstructions of coronary bypass grafts performed from X-ray angiographic images may become increasingly important for the investigation of damaging mechanical stresses imposed to these vessels by the cyclic movement of the heart. Contrary to what we had experienced with coronary arteries, appreciable reconstruction artifacts frequently occur with grafts. In order to verify the hypothesis that those are caused by distortions present in the angiographic images (acquired with image intensifiers), we have implemented a grid correction technique in our 3-D reconstruction method and studied its efficiency with phantom experiments. In this article, the nature of the encountered artifacts and the way in which the dewarping correction eliminates them are illustrated by a phantom experiment and by the reconstruction of a real coronary bypass vein graft.  相似文献   

7.
We introduce a new approach for 3-D segmentation and quantification of vessels. The approach is based on a 3-D cylindrical parametric intensity model, which is directly fitted to the image intensities through an incremental process based on a Kalman filter. Segmentation results are the vessel centerline and shape, i.e., we estimate the local vessel radius, the 3-D position and 3-D orientation, the contrast, as well as the fitting error. We carried out an extensive validation using 3-D synthetic images and also compared the new approach with an approach based on a Gaussian model. In addition, the new model has been successfully applied to segment vessels from 3-D MRA and computed tomography angiography image data. In particular, we compared our approach with an approach based on the randomized Hough transform. Moreover, a validation of the segmentation results based on ground truth provided by a radiologist confirms the accuracy of the new approach. Our experiments show that the new model yields superior results in estimating the vessel radius compared to previous approaches based on a Gaussian model as well as the Hough transform.  相似文献   

8.
Blind image deconvolution using a robust GCD approach   总被引:3,自引:0,他引:3  
In this correspondence, a new viewpoint is proposed for estimating an image from its distorted versions in presence of noise without the a priori knowledge of the distortion functions. In z-domain, the desired image can be regarded as the greatest common polynomial divisor among the distorted versions. With the assumption that the distortion filters are finite impulse response (FIR) and relatively coprime, in the absence of noise, this becomes a problem of taking the greatest common divisor (GCD) of two or more two-dimensional (2-D) polynomials. Exact GCD is not desirable because even extremely small variations due to quantization error or additive noise can destroy the integrity of the polynomial system and lead to a trivial solution. Our approach to this blind deconvolution approximation problem introduces a new robust interpolative 2-D GCD method based on a one-dimensional (1-D) Sylvester-type GCD algorithm. Experimental results with both synthetically blurred images and real motion-blurred pictures show that it is computationally efficient and moderately noise robust.  相似文献   

9.
We study 3-D retinal curvature estimation from multiple images that provides the fundamental geometry of the human retina and could be used for 3-D retina visualization and disease diagnosis purposes. An affine camera model is used for 3-D reconstruction due to its simplicity, linearity, and robustness. A major challenge is that a series of optics is involved in the retinal imaging process, including an actual fundus camera, a digital camera, and the optics of the human eye, all of which cause significant nonlinear distortions in retinal images. In this paper, we develop a new constrained optimization method that considers both the geometric shape of the human retina and nonlinear lens distortions. Moreover, we examine a variety of lens distortion models to approximate the optics of the human eye in order to create a smooth spherical surface for curvature estimation. The experimental results on both synthetic data and real retinal images validate the proposed algorithm.   相似文献   

10.
Previously, we developed a method to determine the acquisition geometry of a pinhole camera. This information is needed for the correct reconstruction of pinhole single photon emission computed tomography images. The method uses a calibration phantom consisting of three point sources and their positions in the field of view (FOV) influence the accuracy of the geometry estimate. This paper proposes two particular configurations of point sources with specific positions and orientations in the FOV for optimal image reconstruction accuracy. For the proposed calibration setups, inaccuracies of the geometry estimate due to noise in the calibration data, only cause subresolution inaccuracies in reconstructed images. The calibration method also uses a model of the point source configuration, which is only known with limited accuracy. The study demonstrates, however, that, with the proposed calibration setups, the error in reconstructed images is comparable to the error in the phantom model.  相似文献   

11.
During an intravascular ultrasound (IVUS) intervention, a catheter with an ultrasound transducer is introduced in the body through a blood vessel, and then, pulled back to image a sequence of vessel cross sections. Unfortunately, there is no 3-D information about the position and orientation of these cross-section planes, which makes them less informative. To position the IVUS images in space, some researchers have proposed complex stereoscopic procedures relying on biplane angiography to get two X-ray image sequences of the IVUS transducer trajectory along the catheter. To simplify this procedure, we and others have elaborated algorithms to recover the transducer 3-D trajectory with only a single view X-ray image sequence. In this paper, we present an improved method that provides both automated 2-D and 3-D transducer tracking based on pullback speed as a priori information. The proposed algorithm is robust to erratic pullback speed and is more accurate than the previous single-plane 3-D tracking methods.  相似文献   

12.
We propose a new adaptive filtering framework for local image registration, which compensates for the effect of local distortions/displacements without explicitly estimating a distortion/displacement field. To this effect, we formulate local image registration as a two-dimensional (2-D) system identification problem with spatially varying system parameters. We utilize a 2-D adaptive filtering framework to identify the locally varying system parameters, where a new block adaptive filtering scheme is introduced. We discuss the conditions under which the adaptive filter coefficients conform to a local displacement vector at each pixel. Experimental results demonstrate that the proposed 2-D adaptive filtering framework is very successful in modeling and compensation of both local distortions, such as Stirmark attacks, and local motion, such as in the presence of a parallax field. In particular, we show that the proposed method can provide image registration to: a) enable reliable detection of watermarks following a Stirmark attack in nonblind detection scenarios, b) compensate for lens distortions, and c) align multiview images with nonparametric local motion.  相似文献   

13.
Fluoroscopic overlay images rendered from preoperative volumetric data can provide additional anatomical details to guide physicians during catheter ablation procedures for treatment of atrial fibrillation (AFib). As these overlay images are often compromised by cardiac and respiratory motion, motion compensation methods are needed to keep the overlay images in sync with the fluoroscopic images. So far, these approaches have either required simultaneous biplane imaging for 3-D motion compensation, or in case of monoplane X-ray imaging, provided only a limited 2-D functionality. To overcome the downsides of the previously suggested methods, we propose an approach that facilitates a full 3-D motion compensation even if only monoplane X-ray images are available. To this end, we use a training phase that employs a biplane sequence to establish a patient specific motion model. Afterwards, a constrained model-based 2-D/3-D registration method is used to track a circumferential mapping catheter. This device is commonly used for AFib catheter ablation procedures. Based on the experiments on real patient data, we found that our constrained monoplane 2-D/3-D registration outperformed the unconstrained counterpart and yielded an average 2-D tracking error of 0.6 mm and an average 3-D tracking error of 1.6 mm. The unconstrained 2-D/3-D registration technique yielded a similar 2-D performance, but the 3-D tracking error increased to 3.2 mm mostly due to wrongly estimated 3-D motion components in X-ray view direction. Compared to the conventional 2-D monoplane method, the proposed method provides a more seamless workflow by removing the need for catheter model re-initialization otherwise required when the C-arm view orientation changes. In addition, the proposed method can be straightforwardly combined with the previously introduced biplane motion compensation technique to obtain a good trade-off between accuracy and radiation dose reduction.  相似文献   

14.
Three-dimensional reconstruction of vessels from digital X-ray angiographic images is a powerful technique that compensates for limitations in angiography. It can provide physicians with the ability to accurately inspect the complex arterial network and to quantitatively assess disease induced vascular alterations in three dimensions. In this paper, both the projection principle of single view angiography and mathematical modeling of two view angiographies are studied in detail. The movement of the table, which commonly occurs during clinical practice, complicates the reconstruction process. On the basis of the pinhole camera model and existing optimization methods, an algorithm is developed for 3-D reconstruction of coronary arteries from two uncalibrated monoplane angiographic images. A simple and effective perspective projection model is proposed for the 3-D reconstruction of coronary arteries. A nonlinear optimization method is employed for refinement of the 3-D structure of the vessel skeletons, which takes the influence of table movement into consideration. An accurate model is suggested for the calculation of contour points of the vascular surface, which fully utilizes the information in the two projections. In our experiments with phantom and patient angiograms, the vessel centerlines are reconstructed in 3-D space with a mean positional accuracy of 0.665 mm and with a mean back projection error of 0.259 mm. This shows that the algorithm put forward in this paper is very effective and robust.  相似文献   

15.
Extraction of line properties based on direction fields   总被引:1,自引:0,他引:1  
The authors present a new set of algorithms for segmenting lines, mainly blood vessels in X-ray images, and extracting properties such as their intensities, diameters, and center lines. The authors developed a tracking algorithm that checks rules taking the properties of vessels into account. The tools even detect veins, arteries, or catheters of two pixels in diameter and with poor contrast. Compared with other algorithms, such as the Canny line detector or anisotropic diffusion, the authors extract a smoother and connected vessel tree without artifacts in the image background. As the tools depend on common intermediate results, they are very fast when used together. The authors' results will support the 3-D reconstruction of the vessel tree from stereoscopic projections. Moreover, the authors make use of their line intensity measure for enhancing and improving the visibility of vessels in 3-D X-ray images. The processed images are intended to support radiologists in diagnosis, radiation therapy planning, and surgical planning. Radiologists verified the improved quality of the processed images and the enhanced visibility of relevant details, particularly fine blood vessels.  相似文献   

16.
Model-based quantitation of 3-D magnetic resonance angiographic images   总被引:4,自引:0,他引:4  
Quantification of the degree of stenosis or vessel dimensions are important for diagnosis of vascular diseases and planning vascular interventions. Although diagnosis from three-dimensional (3-D) magnetic resonance angiograms (MRA's) is mainly performed on two-dimensional (2-D) maximum intensity projections, automated quantification of vascular segments directly from the 3-D dataset is desirable to provide accurate and objective measurements of the 3-D anatomy. A model-based method for quantitative 3-D MRA is proposed. Linear vessel segments are modeled with a central vessel axis curve coupled to a vessel wall surface. A novel image feature to guide the deformation of the central vessel axis is introduced. Subsequently, concepts of deformable models are combined with knowledge of the physics of the acquisition technique to accurately segment the vessel wall and compute the vessel diameter and other geometrical properties. The method is illustrated and validated on a carotid bifurcation phantom, with ground truth and medical experts as comparisons. Also, results on 3-D time-of-flight (TOF) MRA images of the carotids are shown. The approach is a promising technique to assess several geometrical vascular parameters directly on the source 3-D images, providing an objective mechanism for stenosis grading.  相似文献   

17.
Modern video-based endoscopes offer physicians a wide-angle field of view (FOV) for minimally invasive procedures. Unfortunately, inherent barrel distortion prevents accurate perception of range. This makes measurement and distance judgment difficult and causes difficulties in emerging applications, such as virtual guidance of endoscopic procedures. Such distortion also arises in other wide FOV camera circumstances. This paper presents a distortion-correction technique that can automatically calculate correction parameters, without precise knowledge of horizontal and vertical orientation. The method is applicable to any camera-distortion correction situation. Based on a least-squares estimation, our proposed algorithm considers line fits in both FOV directions and gives a globally consistent set of expansion coefficients and an optimal image center. The method is insensitive to the initial orientation of the endoscope and provides more exhaustive FOV correction than previously proposed algorithms. The distortion-correction procedure is demonstrated for endoscopic video images of a calibration test pattern, a rubber bronchial training device, and real human circumstances. The distortion correction is also shown as a necessary component of an image-guided virtual-endoscopy system that matches endoscope images to corresponding rendered three-dimensional computed tomography views.  相似文献   

18.
In the rapidly evolving field of intravascular ultrasound (IVUS), the assessment of vessel morphology still lacks a geometrically correct three-dimensional (3-D) reconstruction. The IVUS frames are usually stacked up to form a straight vessel, neglecting curvature and the axial twisting of the catheter during the pullback. Our method combines the information about vessel cross-sections obtained from IVUS with the information about the vessel geometry derived from biplane angiography. First, the catheter path is reconstructed from its biplane projections, resulting in a spatial model. The locations of the IVUS frames are determined and their orientations relative to each other are calculated using a discrete approximation of the Frenet-Serret formulas known from differential geometry. The absolute orientation of the frame set is established, utilizing the imaging catheter itself as an artificial landmark. The IVUS images are segmented, using our previously developed algorithm. The fusion approach has been extensively validated in computer simulations, phantoms, and cadaveric pig hearts.  相似文献   

19.
A holographic display based on a viewing window enables the converging of a reconstruction wave into a viewing window by means of an optical system. Accordingly, a user can observe a reconstructed hologram image, even with a small diffraction angle. It is very difficult to manufacture an optical system with no aberrations; thus, it is inevitable that a certain amount of wave aberrations will exist. A viewing‐window‐based holographic display, therefore, always includes distortions in an image reconstructed from a hologram pattern. Compensating the distortions of a reconstructed image is a very important technical issue because it can dramatically improve the performance when reconstructing a digital three‐dimensional content image from a hologram pattern. We therefore propose a method for suppressing image distortion by measuring and compensating the wave aberration calculated from a Zernike polynomial, which can represent arbitrary wave aberrations. Through our experimental configuration using only numerical calculations, our proposed method decreased the reconstructed image distortion by more than 28%.  相似文献   

20.
A linearly scanned three-dimensional (3-D) ultrasound imaging system is considered. The transducer array is initially oriented along the x axis and aimed in the y direction. After being tilted by an angle theta about the x axis, and then swiveled by an angle phi about the y axis, it is translated in the z direction, in steps of size d, to acquire a series of parallel two-dimendional (2-D) images. From these, the 3-D image is reconstructed, using the nominal values of the parameters (phi, theta, d). Thus, any systematic or random errors in these, relative to their actual values (phi0, theta0, d0), will respectively cause distortions or variances in length, area, and volume in the reconstructed 3-D image, relative to the 3-D object. Here, we analyze these effects. Compact linear approximations are derived for the relative distortions as functions of the parameter errors, and hence, for the relative variances as functions of the parameter variances. Also, exact matrix formulas for the relative distortions are derived for arbitrary values of (phi, theta, d) and (phi0, theta0, d0). These were numerically compared to the linear approximations and to measurements from simulated 3-D images of a cubical object and real 3-D images of a wire phantom. In every case tested, the theory was confirmed within experimental error (0.5%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号