首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
作为一种软输入软输出的MIMO检测算法,MMSE迭代软干扰抵消算法在MIMO Turbo接收机中得到广泛的关注。为了进一步改善系统性能,采用链路自适应方案是很好的选择。该文给出变发射功率的MMSE迭代软干扰抵消算法,并采用了一种有效的发射功率分配方案,只需要很少的控制信令,就可以获得较大的误码率性能改善。通过没有信道编译码的链路仿真,在4发4收QPSK调制的V-BLAST系统中,如果误码率要求为BER=10-3,MMSE迭代软干扰抵消检测算法迭代次数为2时,采用推荐的发射功率分配方案比不采用发射功率分配方案的系统性能提高了约2dB,如果调制方式为16QAM,系统性能提高了约6dB。  相似文献   

2.
This paper describes the performance of eigenbeam multiple-input multiple-output (MIMO) with transmit antenna selection using orthogonal frequency-division multiplexing (OFDM), as measured in a testbed implemented using field-programmable gate arrays (FPGAs); it also targets the downlink performance improvement of wireless local area networks (LANs). For this verification, we employ a determinant-based simple transmit antenna selection approach based on the estimated instantaneous MIMO channel matrix. We show extensive experiments on the testbed to confirm the performance of eigenbeam MIMO-OFDM with transmit antenna selection in the three-select-two antenna case. First, the measured packet-error-rate (PER) performance confirms that the eigenbeam scheme with the three-select-two antenna-selection scheme provides a slight degradation in the required carrier-to-noise power ratio (CNR) that is approximately 0.2 dB from the eigenbeam-only scheme with three transmit antennas but with significantly lower computational complexity. Second, to determine the impact of Doppler frequency, both 5 Hz and 20 Hz, we focus on the required CNR performance degradation under various transmission intervals between the channel sounding packet and the data packet. It is experimentally confirmed that the eigenbeam scheme with transmit antenna selection offers improved robustness to MIMO channel fluctuation compared with the eigenbeam-only scheme.   相似文献   

3.
采用多天线技术的60 GHz无线通信被认为是未来室内场景下高数据率宽带无线接入一种有前途的解决方案。参考802.11ad工作小组采用的60 GHz信道模型,根据60 GHz路径损耗公式提出的分布式天线系统间距的优化方案可以保证房间内功率覆盖的均匀性。在此基础上,进一步分析60 GHz多天线系统在不同链路条件下的信道条件数关系,提出一种基于信道条件数的天线选择策略。该策略利用信道条件数判断信道性能,既保证了通信质量,又适时降低系统总功率,切换简单、易于操作,适用于60 GHz室内无线通信。  相似文献   

4.
In this paper, we investigate a multiple-input-multiple-output (MIMO) scheme combining transmit antenna selection and receiver maximal-ratio combining (the TAS/MRC scheme). In this scheme, a single transmit antenna, which maximizes the total received signal power at the receiver, is selected for uncoded transmission. The closed-form outage probability of the system with transmit antenna selection is presented. The bit error rate (BER) of the TAS/MRC scheme is derived for binary phase-shift keying (BPSK) in flat Rayleigh fading channels. The BER analysis demonstrates that the TAS/MRC scheme can achieve a full diversity order at high signal-to-noise ratios (SNRs), as if all the transmit antennas were used. The average SNR gain of the TAS/MRC is quantified and compared with those of uncoded receiver MRC and space-time block codes (STBCs). The analytical results are verified by simulation. It is shown that the TAS/MRC scheme outperforms some more complex space-time codes of the same spectral efficiency. The cost of the improved performance is a low-rate feedback channel. We also show that channel estimation errors based on pilot symbols have no impact on the diversity order over quasi-static fading channels.  相似文献   

5.
In existing grouped multilevel space-time trellis codes (GMLSTTCs), the groups of transmit antennas are predefined, and the transmit power is equally distributed across all transmit antennas. When the channel parameters are perfectly known at the transmitter, adaptive antenna grouping and beamforming scheme can achieve the better performance by optimum grouping of transmit antennas and properly weighting transmitted signals based on the available channel information. In this paper, we present a new code designed by combining GMLSTTCs, adaptive antenna grouping and beamforming using the channel state information at transmitter (CSIT), henceforth referred to as weighted adaptively grouped multilevel space time trellis codes (WAGMLSTTCs). The CSIT is used to adaptively group the transmitting antennas and provide a beamforming scheme by allocating the different powers to the transmit antennas. Simulation results show that WAGMLSTTCs provide improvement in error performance of 2.6 dB over GMLSTTCs.  相似文献   

6.
Antenna plays an important role in any part of the communication system. It has to be designed very cautiously to provide improved system performance to meet the developments in wireless technologies with various design constraints such as small size, low cost, high data, low power consumption and wideband capabilities. Several efforts have been made by various investigators around the globe to amalgamate benefits of fractal structures with electromagnetic concepts and applications to reduce the size of the antenna without obstructing the performance of the antennas. This paper proposes a novel compact octagonal shaped broadband fractal antenna. The proposed antenna was designed on an inexpensive FR4-epoxy substrate and simulated using the High Frequency Structure Simulator. The antenna resonates in dual bands in 3.8 and 1 GHz with lowest return loss of ? 32.80 dB and gain of 10.22 dB while maintaining the VSWR in the 2:1 level. Attempts have been made to reduce the size and improve the bandwidth using fractal concept and truncation of ground plane. The fabricated antenna was verified experimentally and the results are agreeing with the simulations. The point of attraction of this antenna is the use of single patch for broadband coverage with easy fabrication.  相似文献   

7.
赵晓  冯兴乐  刘学锋 《微电子学》2012,42(2):203-205,209
针对多输入多输出(MIMO)系统中发射天线之间存在的相关性对系统性能的影响,在已有的基于相关矩阵自适应调整发射功率和相位的预编码算法的基础上,增加基于最小判决距离最大化准则的自适应调制,使接收端能得到均衡且总体最小的误码率.仿真结果表明,该算法可更好地自适应信道,在误码率为10-2时,能取得4dB的增益.  相似文献   

8.
We compare two approaches to use multiple transmit antennas in an FEC coded wireless system: smart antennas use an antenna array to direct a beam in the direction of the dominant transmission path in order to obtain an antenna gain. Another approach is to use multiple transmit antennas for diversity using space-time block codes. Since no knowledge of the channel is required at the transmitter we denote this approach as dumb antennas. Using equivalent single-input channel models we compare smart and dumb antennas in terms of the BER performance and channel capacity and discuss under which conditions it is preferable to use multiple transmit antennas for transmit diversity or for beamforming  相似文献   

9.
In this paper, we present a comprehensive performance analysis of multiple-input multiple-output (MIMO) systems with transmit antenna selection (TAS) and stochastic power allocation (SPA) for the spatially correlated fading channels. Two best transmit antennas that maximize the instantaneous received signal-to-noise (SNR) are selected to transmit the Alamouti scheme and maximal-ratio combining (MRC) is applied at the receiver. With correlation matrices available to the transmitter, SPA is applied on these selected antennas. Two different methods are given to derive the explicit upper bounds on the bit-error rate (BER) performance. Finally we present numerical results to verify our analysis. It is shown that the TAS/SPA scheme can achieve high performance in spatially correlated channels.  相似文献   

10.
With the introduction of multiple transmit and receive antennas in next generation wireless systems, real-time image and video communication are expected to become quite common, since very high data rates will become available along with improved data reliability. New joint transmission and coding schemes that explore advantages of multiple antenna systems matched with source statistics are expected to be developed. Based on this idea, we present an unequal power allocation scheme for transmission of JPEG compressed images over multiple-input multiple-output systems employing spatial multiplexing. The JPEG-compressed image is divided into different quality layers, and different layers are transmitted simultaneously from different transmit antennas using unequal transmit power, with a constraint on the total transmit power during any symbol period. Results show that our unequal power allocation scheme provides significant image quality improvement as compared to different equal power allocations schemes, with the peak-signal-to-noise-ratio gain as high as 14 dB at low signal-to-noise-ratios.   相似文献   

11.
Space-time coding is well understood for high data rate communications over wireless channels with perfect channel state information. On the other hand, channel coding for multiple transmit antennas when channel state information is unknown has only received limited attention. A new signaling scheme, named unitary space-time modulation, has been proposed for the latter case. In this paper, we consider the use of turbo coding together with unitary space-time modulation. We demonstrate that turbo coded space-time modulation systems are well suited to wireless communication systems when there is no channel state information, in the sense that the turbo coding improves the bit error rate (BER) performance of the system considerably. In particular, we observe that the turbo-coded system provides 10-15 dB coding gain at a BER of 10/sup -5/ compared to the unitary space-time modulation for various transmit and receive antenna diversity cases.  相似文献   

12.
微波无线输能技术因其传输距离远,易于调控,近年来受到广泛的关注。文中提出一款基于移动馈源的波束扫描平面反射阵天线,该阵列由19×19个移相单元构成,整体尺寸为490.2 mm×490.2 mm。通过仿真验证了提出的移相单元可以覆盖360°全相位,且反射系数大于-0.1 dB(97.7%)。基于CST全波仿真表明,设计的反射阵扫描角度为-28°~+25°。同时,搭建了一个微型的传能系统用于验证反射阵天线的性能。通过实验验证发现在有平面反射阵天线的情况下,在其辐射近场范围内,无线传能系统接收终端获得的功率提高约为无反射阵情况下的700%~1500%,非常有利于传能系统的能量传输。仿真和实验结果均证明该反射阵天线在微波无线传能领域具有一定的应用前景。  相似文献   

13.
天线选择技术在MIMO中的应用   总被引:1,自引:0,他引:1  
MIMO系统是当今无线通信领域的重要技术,但是它存在一个严重的缺陷:随着天线数量增多,系统的复杂度和成本大大增加。天线选择技术被认为是降低MIMO系统复杂度的有力方案。本文详细阐述了天线选择技术在MIMO系统中的应用,它能在保证系统传输速率的同时降低复杂度和误码率。  相似文献   

14.
Two practical channel estimation schemes, the moment‐based first‐and‐second moments and the simplified maximum likelihood estimators, are proposed for the MIMO/on–off keying system with square envelope detection applied for wireless sensor networks. Here, both the channel response and noise power are estimated simultaneously in comparison with other approaches in which the noise quantity is assumed to be known at the receiver. Hence, the developed estimators are more practical than those estimators without noise power estimation. Simulation results reveal that the system with both proposed schemes can achieve an excellent BER performance in a wide signal‐to‐noise ratio (SNR) range. More specifically, we observed that the simplified maximum likelihood estimator performed as well as the moment‐based first‐and‐second moments estimator for SNR greater than 7.5 dB, yet had much more decline at low SNRs. This study also investigated the effects of the numbers of receive antennas and transmit antennas on the system performance. Simulation results demonstrated that, at the BER of 10?3, the 5 × 5 system had an improvement of 7 dB in SNR compared with the 3 × 3 system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
提出一种适用于Turbo-BLAST系统的自适应天线选择和功率分配算法,所提算法以误比特率为优化目标,并且考虑了信道估计误差的影响.在总功率约束条件下,采用所提算法进行天线选择和自适应功率分配,并利用软干扰抵消算法对接收信号进行迭代检测,以进一步改善系统性能.仿真结果表明:采用所提算法可以显著改善系统的误比特率性能.  相似文献   

16.
In this letter, we investigate the asymptotic error performance of an uncoded multiple-input-multiple-output (MIMO) scheme combining transmit antenna selection and receiver maximal-ratio combining (MRC) with a generalized selection criterion. A single transmit antenna corresponding to a fixed ordinal number of order statistic is selected for uncoded transmission. The order statistics consist of instantaneous channel power gain between each transmit and all the receive antennas. A general asymptotic bit error rate (BER) expression is derived for all values of ordinal number. An interesting conclusion is reached that the system diversity order is proportional to the ordinal number of the selected antenna.  相似文献   

17.
Future broadband wireless communication systems demand high quality of service (QoS) for anytime anywhere multimedia applications. The standards which use orthogonal frequency division multiplexing (OFDM) coupled with multi input multi output (MIMO) are expected to rule the future wireless world. Time selective nature of the channel introduces inter carrier interference (ICI), which is the major performance limiting parameter in OFDM based systems. ICI causes loss in spectral efficiency and results in poor bit error rate (BER) performance, affecting the QoS of MIMO-OFDM systems. The conventional single input single output (SISO)-OFDM-flexible subcarrier spacing (FSS) system offers better performance than the fixed subcarrier spacing systems in terms of ICI mitigation. But BER and spectral efficiency performance of SISO-OFDM-FSS is not good enough to satisfy the requirements of future wireless broadband services. To improve the BER performance, SISO-OFDM system is replaced by space frequency block coded (SFBC)-OFDM system, which adds spatial and frequency diversity benefits to the conventional system. More number of antennas in the MIMO scheme increases the hardware cost, computational complexity and percentage of overhead. In the present study, to improve the spectral efficiency and to reduce the complexity and cost, optimal transmit antenna selection (OTAS) is combined with the SFBC-OFDM-FSS scheme. The simulation results prove that the proposed SFBC-OFDM-FSS-OTAS scheme offers better QoS than the conventional SISO-OFDM-FSS scheme.  相似文献   

18.
Dual-frequency operation of antenna has become a necessity for many applications in recent wireless communication systems, such as GPS, GSM services each operating at two different frequency bands. A new technique to achieve dual band operation from different types of microstrip antennas is presented here. An evolutionary design process using a particle swarm optimization (PSO) algorithm in conjunction with the method of moments (MoM) is employed effectively to obtain the geometric parameters of the antenna performance. In this article a PSO based on IE3D®? method is used to design dual band inset feed microstrip antenna. Maximum return loss is obtained at 2.4 GHz is ?43.95 dB and at 3.08 GHz is ?27.4 dB. Its bandwidth, of 33.54 MHz, ranges from 2.38355 GHz to 2.41709 GHz. Simulated and experimental results of the antenna are discussed.  相似文献   

19.
Variable-rate space-time block codes in M-ary PSK systems   总被引:2,自引:0,他引:2  
We consider a multiple antenna system when combined array processing with space-time coding is used. We present variable rate space-time block codes for two, three, and four transmit antennas and optimize the transmit power so that the average bit-error rate (BER) is minimized. Numerical results show that this optimum power allocation scheme provides significant gain over the equal power allocation scheme. We then classify all the variable rate space-time block codes having the same code rates and identify the unique code that achieves the lowest BER. We explicitly compute the performance of the variable rate codes over a Rayleigh-fading channel. The proposed variable rate space-time block codes are useful for unequal error protection in multiple transmit antenna systems.  相似文献   

20.
空分键控是一种新型的空间复用技术,每个时刻只有一个发送天线工作,携带信息的是天线的位置而非发送符号本身,因此该种方法频带利用率较低。为了提高频带利用率,基于广义空间调制的概念,提出了光多天线空分键控调制方法,这种调制方式中每个时刻有多个天线同时工作。首先建立了可见光通信中的多天线空分键控系统模型,并对其误码率性能进行了分析,然后由此为依据提出了一种基于最小距离最大化准则的天线选择算法以获得误码率性能的增益,最后通过蒙特卡罗仿真验证了该天线选择方法的有效性。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号