首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A methodology is presented to determine both the short‐term and the long‐term influence of the spectral variations on the performance of multi‐junction (MJ) solar cells and concentrator photovoltaic (CPV) modules. Component cells with the same optical behavior as MJ solar cells are used to characterize the spectrum. A set of parameters, namely spectral matching ratios (SMRs), is used to characterize spectrally a particular direct normal irradiance (DNI) by comparison to the reference spectrum (AM1.5D‐ASTM‐G173‐03). Furthermore, the spectrally corrected DNI for a given MJ solar cell technology is defined providing a way to estimate the losses associated to the spectral variations. The last section analyzes how the spectrum evolves throughout a year in a given place and the set of SMRs representative for that location are calculated. This information can be used to maximize the energy harvested by the MJ solar cell throughout the year. As an example, three years of data recorded in Madrid shows that losses lower than 5% are expected because of current mismatch for state‐of‐the‐art MJ solar cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The status of the development of a new concentrator module in Japan is discussed based on three arguments, performance, reliability and cost. We have achieved a 26·6% peak uncorrected efficiency from a 7056 cm2 400 × module with 36 solar cells connected in series, measured in house. The peak uncorrected efficiencies of the same type of the module with 6 solar cells connected in series and 1176 cm2 area measured by Fraunhofer ISE and NREL are reported as 27·4% and 24·8% respectively. The peak uncorrected efficiency for a 550× and 5445 cm2 module with 20 solar cells connected in series was 28·9% in house. The temperature‐corrected efficiency of the 550 × module under optimal solar irradiation condition was 31·5 ± 1·7%. In terms of performance, the annual power generation is discussed based on a side‐by‐side evaluation against a 14% commercial multicrystalline silicon module. For reliability, some new degradation modes inherent to high concentration III‐V solar cell system are discussed and a 20‐year lifetime under concentrated flux exposure proven. The fail‐safe issues concerning the concentrated sunlight are also discussed. Moreover, the overall scenario for the reduction of material cost is discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The “SMAC module” is a low‐cost, high‐efficiency photovoltaic module that integrates three techniques: a “SM art stack,” “A real current matching,” and “solar C oncentration.” This paper presents the result of a proof‐of‐concept study of the SMAC module conducted using device simulations and indoor experiments. The simulation results show that an SMAC module with a two‐terminal GaAs/Si tandem solar cell can achieve an efficiency of approximately 30% and superior electricity generation per unit top cell area. The performance of the GaAs/Si solar cell developed in this study is similar to that of a GaAs/InGaAsP solar cell under concentrated artificial sunlight and is consistent with the simulation results. © 2016 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd.  相似文献   

4.
The low cost and high quality of multicrystalline silicon (mc‐Si) based on directional solidification has become the main stream in photovoltaic (PV) industry. The mc‐Si quality affects directly the conversion efficiency of solar cells, and thus, it is crucial to the cost of PV electricity. With the breakthrough of crystal growth technology, the so‐called high‐performance mc‐Si has increased about 1% in solar cell efficiency from 16.6% in 2011 to 17.6% in 2012 based on the whole ingot performance. In this paper, we report our development of this high‐performance mc‐Si. The key ideas behind this technology for defect control are discussed. With the high‐performance mc‐Si, we have achieved an average efficiency of near 17.8% and an open‐circuit voltage (Voc) of 633 mV in production. The distribution of cell efficiency was rather narrow, and low‐efficiency cells (<17%) were also very few. The power of the 60‐cell module using the high‐efficiency cells could reach 261 W as well. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
III–V concentrator photovoltaic systems attain high efficiency through the use of series connected multi‐junction solar cells. As these solar cells absorb over distinct bands over the solar spectrum, they have a more complex response to real illumination conditions than conventional silicon solar cells. Estimates for annual energy yield made assuming fixed reference spectra can vary by up to 15% depending on the assumptions made. Using a detailed computer simulation, the behaviour of a 20‐cell InGaP/In0.01GaAs/Ge multi‐junction concentrator system was simulated in 5‐min intervals over an entire year, accounting for changes in direct normal irradiance, humidity, temperature and aerosol optical depth. The simulation was compared with concentrator system monitoring data taken over the same period and excellent agreement (within 2%) in the annual energy yield was obtained. Air mass, aerosol optical depth and precipitable water have been identified as atmospheric parameters with the largest impact on system efficiency. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
This paper links together two different yet complimentary technologies: concentrator photovoltaics (CPVs) and Sliver technology. Recent research and development and commercialisation efforts in concentrator technologies have centred on high‐concentration systems, encouraged by the availability of high‐efficiency, multi‐junction III‐V cells. In contrast, little attention has been paid to the potential of systems with low‐to‐medium levels of concentration. Arguably, this is due to the absence of any suitable, low‐cost concentrator cells, readily available at a commercial scale. Sliver technology is a candidate for the supply of commercial low‐cost cells suitable for systems with concentration ratios in the range of 5–50. This can be achieved via judicious choice of cell design parameters and with only minor changes to the fabrication process suitable for 1‐sun Sliver cells. Device modelling is used to show that Sliver cells are suitable for illumination intensities up to 5 W/cm2, with unavoidable emitter resistance limiting performance for higher intensities. The best cells manufactured for operation at low and medium concentration had efficiencies of 18·8% at 9 suns (above 18·6% between 5 and 15 suns) and 18·4% at 37 suns (above 18·2% between 30 and 50 suns), respectively. Incorporation of sidewall texturing and SiN anti‐reflection coatings would yield efficiencies exceeding 20% for similar cells. Concentrator Sliver cells can be produced to almost any length and are perfectly bifacial, features which add significantly to their attractiveness to concentrator system designers. The availability of cheap concentrator Sliver cells could provide opportunities for new, low‐cost concentrator systems, which in turn has the potential to provide a pathway to low‐cost solar electricity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
We present a practical implementation of a solar thermophotovoltaic (TPV) system. The system presented in this paper comprises a sunlight concentrator system, a cylindrical cup‐shaped absorber/emitter (made of tungsten coated with HfO2), and an hexagonal‐shaped water‐cooled TPV generator comprising 24 germanium TPV cells, which is surrounding the cylindrical absorber/emitter. This paper focuses on the development of shingled TPV cell arrays, the characterization of the sunlight concentrator system, the estimation of the temperature achieved by the cylindrical emitters operated under concentrated sunlight, and the evaluation of the full system performance under real outdoor irradiance conditions. From the system characterization, we have measured short‐circuit current densities up to 0.95 A/cm2, electric power densities of 67 mW/cm2, and a global conversion efficiency of about 0.8%. To our knowledge, this is the first overall solar‐to‐electricity efficiency reported for a complete solar thermophotovoltaic system. The very low efficiency is mainly due to the overheating of the cells (up to 120 °C) and to the high optical concentrator losses, which prevent the achievement of the optimum emitter temperature. The loss analysis shows that by improving both aspects, efficiencies above 5% could be achievable in the very short term and efficiencies above 10% could be achieved with further improvements. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Silicon represents an interesting material to fabricate low‐cost and relatively simple and high‐efficient solar cells in the low and medium concentration range. In this paper, we discuss a novel cell scheme conceived for concentrating photovoltaic, named emitter wrap through with deep grooved base (EWT‐DGB), and compare it with the simpler passivated emitter solar cell. Both cells have been fabricated by means of a complementary metal–oxide–semiconductor‐compatible process in our laboratory. The experimental characterization of both cells is reported in the range 1–200 suns in terms of conversion efficiency, open circuit voltage, short circuit current density and fill factor. In particular, for the EWT‐DGB solar cells, we obtain an encouraging 21.4% maximum conversion efficiency at 44 suns. By using a calibrated finite‐element numerical electro‐optical simulation tool, validated by a comparison with experimental data, we study the potentials of the two architectures for concentrated light conditions considering possible realistic improvements with respect to the fabricated devices. We compare the solar cell figures of merit with those of the state‐of‐the‐art silicon back‐contact back‐junction solar cell holding the conversion efficiency record for concentrator photovoltaic silicon. Simulation results predict a 24.8% efficiency at 50 suns for the EWT‐DGB cell and up to 23.9% at 100 suns for the passivated emitter solar cell, thus confirming the good potential of the proposed architectures for low to medium light concentration. Finally, simulations are exploited to provide additional analysis of the EWT‐DGB scheme under concentrated light. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
We describe here a lumped diode model for concentrator multijunction solar cells, in which the temperature, irradiance and spectrum dependences are explicitly included. Moreover an experimental method based on it for the prediction of the I‐V curve under any irradiance‐spectrum‐temperature conditions from a single input measurement is proposed and applied to a set of commercial triple‐junction solar cells in order to demonstrate its validity. Component ‘isotype’ cells are used as reference cells for intensity and spectrum, sparing the measurement of light spectrum and cell spectral response. Finally, a mean RMS prediction error of 0.85% over a range of 100X‐25°C to 700X‐75°C is reported for the whole set when the model parameters inherent in the cell are assumed to be the same for every sample. If optimum parameters are extracted for every cell, the RMS error is reduced to 0.53%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The main limiting factors of multijunction solar cells operating under ultra‐high concentration (>1000 suns) are examined by means of 2D physically based numerical modelling. The validation of the model is carried out by fitting calibrated light concentration measurements. Because the series resistance is the most important constraint in the electrical performance of the solar cell under ultra‐high irradiance, it is analysed and quantified detailing different contributions such as: (i) the electrical properties of the emitter; (ii) window layer of the top cell; and (iii) the band discontinuities formed at heterojunctions. We found the role of window layer to be important at very high concentrations (above 700 suns), while at ultra‐high concentrations, (above 1000 suns) a gain in efficiency (~ 1% absolute) can be obtained by a proper structural design of the window layer. In the case of the heterojunctions included in the multijunction solar cell, the impact of a high‐band offset can be mitigated by increasing the doping level density thus favouring the tunnelling effect. Moreover, the influence of different recombination mechanisms and high‐injection effects at ultra‐high irradiance is discussed. Finally, an optimisation of the complete solar cell taking into account the ohmic contacts to work under ultra‐high irradiances (from 1000 to 5000 suns) is presented as well as the implications on the use of ultra‐high irradiance in different multijunction solar cell architectures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Champion concentrator cell efficiencies have surpassed 40% and now many are asking whether the efficiencies will surpass 50%. Theoretical efficiencies of >60% are described for many approaches, but there is often confusion about “the” theoretical efficiency for a specific structure. The detailed balance approach to calculating theoretical efficiency gives an upper bound that can be independent of material parameters and device design. Other models predict efficiencies that are closer to those that have been achieved. Changing reference spectra and the choice of concentration further complicate comparison of theoretical efficiencies. This paper provides a side‐by‐side comparison of theoretical efficiencies of multi‐junction solar cells calculated with the detailed balance approach and a common one‐dimensional‐transport model for different spectral and irradiance conditions. Also, historical experimental champion efficiencies are compared with the theoretical efficiencies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The present work summarises the results of an experiment of light‐soaking high‐concentrator MOVPE‐grown GaAs solar cells under monochromatic light (808 nm). The irradiance level was set so that the short‐circuit current obtained was 1100 times that produced with the AM1ċ5D spectrum at 1 kW/m2. This test caused no morphological changes in the devices. The main phenomenon discovered has been a slight increase with time of the reverse current I02. This increase is analogous to that observed in similar degradation experiments based on high forward currents. In general, the results of these tests show that the drop in performance is very limited, supporting the idea that concentrator GaAs solar cells are rugged devices, capable of achieving long lifetimes in field operation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
为了测量太阳辐照度以便达到使光伏电站的效率最大化,提出了一种新的基于反馈神经网络的太阳辐照度测量方法,该方法可用来直接使光伏电站的效率最大化。所提出的传感器由一个光伏电池、一个温度传感器和一个低成本的微控制器组成。计算表明,提出的传感器设计成本较低,因而该装置在光伏电站的大型部署中是一个很好的替代品。使用实验样机对所提出的方法进行了验证,结果显示与商用装置相比,本文设计的传感器更够更加精确地跟踪光伏电站内的太阳辐照度。  相似文献   

14.
Antireflective light trapping glass nanostructures fabricated by a non‐lithographic process are investigated for their angle dependent properties to improve the omnidirectional performance of solar modules. Optical transmission and solar cell module I‐V measurements are used to understand the dependence of angular performance of nanostructures in the packaging glass. Nanostructures 100–400 nm in height demonstrate an increase in solar light transmission both for normal as well as oblique incidence and measurements show that a ~200‐400 nm nanostructure height is optimum for solar modules, providing an absolute increase of 1% in the power conversion efficiency at normal incidence and a gain in short circuit current density over a 120° angular cone of solar incidence. This shows that packaging glass texturing can be an important and often‐overlooked method to yield substantial gain in solar module efficiency. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Si thin‐film solar cells are suitable to the sunbelt region due to a low temperature coefficient and to building integrated photovoltaics owing to flexible size, easily controllable transmittance, and an aesthetic design. Nevertheless, the application is limited until now due to their low conversion efficiency. We have developed a triple junction cell (a‐Si:H/a‐SiGe:H/µc‐Si:H) providing efficient light utilization. For the high efficiency, we have focused on the smoothing of high haze TCO, a low absorption window layer, a low refractive index interlayer, uniformity control of the thickness and crystalline volume fraction in the microcrystalline silicon layer, and a low absorption back reflector. Through these activities, we have achieved a world record of 13.4% stabilized efficiency in the small size cell (1 cm2) and 10.5% stabilized efficiency in the large area module (1.1 × 1.3 m2), certificated by the National Renewable Energy Laboratory and Advanced Industrial Science and Technology, respectively. This result was presented in solar cell efficiency tables (Version 41). At this moment, we have increased a stabilized efficiency of 11.2% (Output power 160 W) in the large area module. We will report on the advanced materials in detail for high efficiency. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Concentrating photovoltaic solar power plants using dual‐axis trackers are in increasing demand. In a utility‐scale photovoltaic system, both capacity factor and ground coverage ratio are widely used to characterize systems in view of the land use efficiency. Current system modeling approaches lack accurate location‐specific direct normal irradiance (DNI), miss a reliable electrical model for power optimization and conversion and are inadequate for optimizing the tracker array configuration. In this paper, a comprehensive modeling of a concentrating photovoltaic system is introduced. First, a more accurate estimation of hourly DNI is obtained by considering location‐dependent DNI and air mass changes according to the sun's elevation. Second, mismatch effects of modules are factored in. Third, various power optimization and conversion levels are taken into account for optimization with self‐shading in each module. The tracker array configuration has been optimized to maximize energy harvest by getting a maximum capacity factor for a given ground coverage ratio. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The basis for the temperature dependence of the principal performance parameters of single and multi‐junction concentrator solar cells is examined, focusing on the impact of bandgap and irradiance. The analysis of cells in the radiative limit establishes fundamental bounds. A quasi‐empirical model yields predictions consistent with available data. A simple method for estimating the temperature coefficients of key performance parameters is identified. The degree to which the efficiency penalty associated with cell heating can be mitigated by high irradiance is also evaluated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
We report experimental results for the effect of irradiance (from 12 up to 8600 suns) on the temperature coefficients of the key performance parameters of multijunction concentrator solar cells, with a flash‐like, real‐sun optical system. Particular attention is paid to the time scales and magnitudes of junction heating, hence the degree to which the cell can be deemed isothermal. The implications for corresponding measurements from solar simulators with pulsed artificial light and for the performance evaluation of concentrator photovoltaics are also addressed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
There has been rapid progress in solution‐processed organic solar cells (OSCs) and perovskite solar cells (PVSCs) toward low‐cost and high‐throughput photovoltaic technology. Carrier (electron and hole) transport layers (CTLs) play a critical role in boosting their efficiency and long‐time stability. Solution‐processed metal oxide nanocrystals (SMONCs) as a promising CTL candidate, featuring robust process conditions, low‐cost, tunable optoelectronic properties, and intrinsic stability, offer unique advantages for realizing cost‐effective, high‐performance, large‐area, and mechanically flexible photovoltaic devices. In this review, the recent development of SMONC‐based CTLs in OSCs and PVSCs is summarized. This paper starts with the discussion of synthesis approaches of SMONCs. Then, a broad range of SMONC‐based CTLs, including hole transport layers and electron transport layers, are reviewed, in which an emphasis is placed on the improvement of the efficiency and device stability. Finally, for the better understanding of the challenges and opportunities on SMONC‐based CTLs, several strategies and perspectives are outlined.  相似文献   

20.
The interconnection of solar cells is a critical part of photovoltaic module fabrication. In this paper, a high‐yield, low‐cost method for interconnecting polycrystalline silicon thin‐film solar cells on glass is presented. The method consists of forming adjacent, electrically isolated groves across the cells using laser scribing, and then forming wire bonds over each laser scribe, resulting in series interconnection of the individual solar cells. Wire bonds are also used to connect the first and last solar cell in the string to external (tabbing) leads, forming a mini‐module. A layer of white paint is then applied, which acts as both an encapsulation layer and an additional back surface reflector. Using this method, an 8·3% efficient mini‐module has been fabricated. By exploiting recent developments in wire bonding technology, it appears that this process can be automated and will be capable of forming solar cell interconnections on large‐area modules within relatively short processing times (∼10 min for a 1 m2 module). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号