首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper describes the life cycle assessment (LCA) for photovoltaic (PV) power plants in the new ecoinvent database. Twelve different, grid‐connected photovoltaic systems were studied for the situation in Switzerland in the year 2000. They are manufactured as panels or laminates, from monocrystalline or polycrystalline silicon, installed on facades, slanted or flat roofs, and have 3 kWp capacity. The process data include quartz reduction, silicon purification, wafer, panel and laminate production, mounting structure, 30 years operation and dismantling. In contrast to existing LCA studies, country‐specific electricity mixes have been considered in the life cycle inventory (LCI) in order to reflect the present market situation. The new approach for the allocation procedure in the inventory of silicon purification, as a critical issue of former studies, is discussed in detail. The LCI for photovoltaic electricity shows that each production stage is important for certain elementary flows. A life cycle impact assessment (LCIA) shows that there are important environmental impacts not directly related to the energy use (e.g., process emissions of NOx from wafer etching). The assumption for the used supply energy mixes is important for the overall LCIA results of different production stages. The presented life cycle inventories for photovoltaic power plants are representative for newly constructed plants and for the average photovoltaic mix in Switzerland in the year 2000. A scenario for a future technology (until 2010) helps to assess the relative influence of technology improvements for some processes. The very detailed ecoinvent database forms a good basis for similar studies in other European countries or for other types of solar cells. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Given the rapid progress in perovskite solar cells in recent years, perovskite/silicon (Si) tandem structure has been proposed to be a potentially cost‐effective improvement on Si solar cells because of its higher efficiency at a minimal additional cost. As part of the evaluation, it is important to conduct a life cycle assessment on such technology in order to guide research efforts towards cell designs with minimum environmental impacts. Here, we carry out a life cycle assessment to assess global warming, human toxicity, freshwater eutrophication and ecotoxicity and abiotic depletion potential impacts and energy payback time associated with three perovskite/Si tandem cell structures using silver (Ag), gold (Au) and aluminium (Al) as top electrodes compared with p–n junction and hetero‐junction with intrinsic inverted layer Si solar cells. It was found that the replacement of the metal electrode with indium tin oxide/metal grid in the tandem cell reduces the environmental impacts significantly compared with the perovskite cell. For all the impacts assessed, we conclude that the perovskite/Si tandem using Al as top electrode has better environmental outcomes, including energy payback time, when compared with the other tandem structures studied. Use of Al in preference to noble metals for contacts, Si p–n junction in preference to intrinsic inverted layer and the avoidance of 2,20,7,70‐tetrakis(N ,N‐di‐p‐methoxyphenylamine)9,90‐spirobifluorene (Spiro‐OMeTAD) are environmentally beneficial. The key result found of this work is that the most important factor for the better environmental impacts of these tandem solar cells is the transparency and electrical conductivity of the perovskite layer after it fails. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
Silicon heterojunction (SHJ) cells offer high efficiencies and several advantages in the production process compared to conventional crystalline silicon solar cells. We performed a life‐cycle assessment to identify the greenhouse gas (GHG) footprint, energy payback time (EPBT) and cumulative energy demand of four different SHJ solar cell designs. We analyse these environmental impacts for cell processing and complete systems for both current and prospective designs. On the basis of in‐plane irradiation of 1700 kWh/m2, results for current designs show that life‐cycle GHG emissions could be 32 gCO2‐eq/kWh for complete SHJ photovoltaic (PV) systems (module efficiencies of 18.4%), compared with 38 gCO2‐eq/kWh for conventional monocrystalline silicon systems (module efficiency of 16.1%). The EPBT of all SHJ designs was found to be 1.5 years, compared with 1.8 years for the monocrystalline PV system. Cell processing contributes little (≤6%) to the overall environmental footprint of SHJ PV systems. Among cell processing steps, vacuum based deposition contributes substantially to the overall results, with 55–80%. Atomic layer deposition of thin films was found to have a significantly lower environmental footprint compared to plasma enhanced chemical vapour deposition and sputtering. Copper‐based compared with silver‐based metallization was shown to reduce the impact of this processing step by 74–84%. Increases in cell efficiency, use of thin silicon wafers and replacement of silver‐based with copper‐based metallization could result in life‐cycle GHG emissions for systems to be reduced to 20 gCO2‐eq/kWh for SHJ systems and 25 gCO2‐eq/kWh for monocrystalline system, while EPBT could drop to 0.9 and 1.2 years, respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents an environmental life cycle assessment of a roof‐integrated flexible solar cell laminate with tandem solar cells composed of amorphous silicon/nanocrystalline silicon (a‐Si/nc‐Si). The a‐Si/nc‐Si cells are considered to have 10% conversion efficiency. Their expected service life is 20 years. The production scale considered is 100 MWp per year. A comparison of the a‐Si/nc‐Si photovoltaic (PV) system with the roof‐mounted multicrystalline silicon (multi‐Si) PV system is also presented. For both PV systems, application in the Netherlands with an annual insolation of 1000 kWh/m2 is considered. We found that the overall damage scores of the a‐Si/nc‐Si PV system and the multi‐Si PV system are 0.012 and 0.010 Ecopoints/kWh, respectively. For both PV systems, the impacts due to climate change, human toxicity, particulate matter formation, and fossil resources depletion together contribute to 96% of the overall damage scores. Each of both PV systems has a cumulative primary energy demand of 1.4 MJ/kWh. The cumulative primary energy demand of the a‐Si/nc‐Si PV system has an uncertainty of up to 41%. For the a‐Si/nc‐Si PV system, an energy payback time of 2.3 years is derived. The construction for roof integration, the silicon deposition, and etching are found to be the largest contributors to the primary energy demand of the a‐Si/nc‐Si PV system, whereas encapsulation and the construction for roof integration are the largest contributors to its impact on climate change. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Solar PV is widely considered as a “green” technology. This paper, however, investigates the environmental impact of the production of solar modules made from thin‐film silicon. We focus on novel applications of nano‐crystalline Silicon materials (nc‐Si) into current amorphous Silicon (a‐Si) devices. Two nc‐Si specific details concerning the environmental performance can be identified, when we want to compare to a‐Si modules. First, in how far the extra (and thicker) silicon layer (s) affects upstream material requirements and energy use. Second, in how far depositing an extra silicon layer may increase emissions of greenhouse gases as additional emissions of Fluor gases (F‐gases) are associated to this step. The much larger global warming potential of F‐gases (17 200–22 800 times that of CO2) may lead to higher environmental burdens. To date, no study has yet analyzed the effect of F‐gas usage on the environmental profile of thin‐film silicon solar modules. We performed a life‐cycle assessment (LCA) to investigate the current environmental usefulness of pursuing this novel micromorph concept. The switch to the new micromorph technology will result in a 60–85% increase in greenhouse gas emissions (per generated kWh solar electricity) in case of NF3 based clean processing, and 15–100% when SF6 is used. We conclude that F‐gas usage has a substantial environmental impact on both module types, in particular the micromorph one. Also, micromorph module efficiencies need to be improved from the current 8–9% (stabilized efficiency) toward 12–16% (stab. eff.) in order to compensate for the increased environmental impacts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
A higher conversion efficiency of photovoltaic modules does not automatically imply a lower environmental impact, when the life‐cycle of modules is taken into account. An environmental comparison is carried out between the production and use phase, except maintenance, of an indium–gallium–phosphide (InGaP) on multicrystalline silicon (mc‐Si) tandem module, a thin‐film InGaP cell module and a mc‐Si module. The evaluation of the InGaP systems was made for a very limited industrial production scale. Assuming a fourfold reuse of the GaAs substrates in the production of the thin‐film InGaP (half) modules, the environmental impacts of the tandem module and of the thin‐film InGaP module are estimated to be respectively 50 and 80% higher than the environmental impact of the mc‐Si module. The energy payback times of the tandem module, the thin‐film InGaP module and the mc‐Si module are estimated to be respectively 5.3, 6.3 and 3.5 years. There are several ways to improve the life‐cycle environmental performance of thin‐film InGaP cells, including improved materials efficiency in production and reuse of the GaAs wafer and higher energy efficiency of the metalorganic chemical vapour deposition process. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Despite the publicity of nanotechnologies in high tech industries including the photovoltaic sector, their life‐cycle energy use and related environmental impacts are understood only to a limited degree as their production is mostly immature. We investigated the life‐cycle energy implications of amorphous silicon (a‐Si) PV designs using a nanocrystalline silicon (nc‐Si) bottom layer in the context of a comparative, prospective life‐cycle analysis framework. Three R&D options using nc‐Si bottom layer were evaluated and compared to the current triple‐junction a‐Si design, i.e., a‐Si/a‐SiGe/a‐SiGe. The life‐cycle energy demand to deposit nc‐Si was estimated from parametric analyses of film thickness, deposition rate, precursor gas usage, and power for generating gas plasma. We found that extended deposition time and increased gas usages associated to the relatively high thickness of nc‐Si lead to a larger primary energy demand for the nc‐Si bottom layer designs, than the current triple‐junction a‐Si. Assuming an 8% conversion efficiency, the energy payback time of those R&D designs will be 0.7–0.9 years, close to that of currently commercial triple‐junction a‐Si design, 0.8 years. Future scenario analyses show that if nc‐Si film is deposited at a higher rate (i.e., 2–3 nm/s), and at the same time the conversion efficiency reaches 10%, the energy‐payback time could drop by 30%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The use of polymer materials for photovoltaic applications is expected to have several advantages over current crystalline silicon technology. In this paper, we perform an environmental and economic assessment of polymer‐based thin film modules with a glass substrate and modules with a flexible substrate and we compare our results with literature data for multicrystalline (mc‐) silicon photovoltaics and other types of PV. The functional unit of this study is ‘25 years of electricity production by PV systems with a power of 1 watt‐peak (Wp)’. Because the lifetime of polymer photovoltaics is at present much lower than of mc‐silicon photovoltaics, we first compared the PV cells per watt‐peak and next determined the minimum required lifetime of polymer PV to arrive at the same environmental impacts as mc‐silicon PV. We found that per watt‐peak of output power, the environmental impacts compared to mc‐silicon are 20–60% lower for polymer PV systems with glass substrate and 80–95% lower for polymer PV with PET as substrate (flexible modules). Also in comparison with thin film CuInSe and thin film silicon, the impacts of polymer modules, per watt‐peak, appeared to be lower. The costs per watt‐peak of polymer PV modules with glass substrate are approximately 20% higher compared to mc‐silicon photovoltaics. However, taking into account uncertainties, this might be an overestimation. For flexible modules, no cost data were available. If the efficiency and lifetime of polymer PV modules increases, both glass‐based and flexible polymer PV could become an environment friendly and cheap alternative to mc‐silicon PV. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Organic solar cells, both in the hybrid dye sensitized technology and in the full organic polymeric technology, are a promising alternative that could supply solar electricity at a cost much lower than other more conventional inorganic photovoltaic technologies. This paper presents a life cycle analysis of the laboratory production of a typical bulk heterojunction organic solar cell and compares this result with those obtained for the industrial production of other photovoltaic technologies. Also a detailed material inventory from raw materials to final photovoltaic module is presented, allowing us to identify potential bottlenecks in a future supply chain for a large industrial output. Even at this initial stage of laboratory production, the energy payback time and CO2 emission factor for the organic photovoltaic technology is of the same order of other inorganic photovoltaic technologies, demonstrating that there is plenty of room for improvement if the fabrication procedure is optimized and scaled up to an industrial process. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Thin-film amorphous silicon alloy technology has emerged as a strong contender for providing low-cost photovoltaic products to meet the energy needs of the 21st century. World record 14·6% initial and 13·0% stable active-area conversion efficiencies have been achieved for small-area solar cells in our laboratory using a spectral-splitting, triple-junction structure. This 0·25-cm2 device exhibited a total-area efficiency of 12·0%, as confirmed by the National Renewable Energy Laboratory. Key factors leading to this achievement will be discussed. We have also demonstrated a 10·2% stable module efficiency for a one-square-foot area. A state-of-the-art, continuous roll-to-roll production line with an annual capacity of 5 MW has been built and started production. Building-integrated photovoltaic applications are being demonstrated worldwide. Public awareness of environmental and ecological issues has provided a great opportunity for the maturing thin-film amorphous silicon alloy technology to demonstrate its viability as a major alternate energy source. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
This paper describes the structure, processing and economics of three difference silicon solar cell technologies developed at the University of New South Wales. The first is the high-efficiency PERL (Passivated Emitter, Rear Locally-diffused) cell technology which has produced the highest ever efficiency silicon solar cells and photovoltaic modules. These cells have a sophisticated cell structure and require high-quality materials and advanced microelectronic-quality technology in their processing. The second is the buried contact solar cell technology, presently the most successfully commercialized solar cell technology developed over the last 15 years. This structure retains the key features of the PERL cell required for high efficiency, while reducing material and processing costs to those comparable to previous commercial screen-printing silicon solar cell approaches. The third technology holds great promise for the future. This multilayer cell technology is based on combining features of the buried contact cell technology with a multijunction thin-film approach to produce thin-film polycrystalline silicon solar cells of potentially high efficiency on low-cost substrates such as glass. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
Solarex was founded in 1973 to develop photovoltaic products for terrestrial applications. Over the last 24 years, the company has moved from single-crystal silicon technology to polycrystalline silicon and has also developed both single-junction and multi-junction amorphous silicon solar cell technology. Solarex is now starting to produce 8-ft2 amorphous silicon tandem modules in a new plant in Virginia and has initiated new programs to develop the grid-connected markets in the USA and overseas. However, the current USA lead in photovoltaics is in jeopardy as government programs in both Japan and Germany are aggressively supporting the development of building integrated photovoltaic systems in those countries. In order to maintain its leadership in photovoltaics, the USA needs to implement a new national initiative to support the development of building integrated photovoltaics. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
The methodology used and results obtained for grid-connected photovoltaic (PV) plants in recent Swiss life-cycle assessment (LCA) studies on current and future energy systems are discussed. Mono- and polycrystalline silicon cell technologies utilized in current panels as well as monocrystalline and amorphous cells for future applications were analysed for Swiss conditions. The environmental inventories of slanted-roof solar panels and large plants are presented. Greenhouse gas emissions from present and future electricity systems are compared. The high electricity requirements for manufacturing determine most of the environmental burdens associated with current photovoltaics. However, due to increasing efficiency of production processes and cells, the environmental performance of PV systems is likely to improve substantially in the future. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
Silicon nitride coating deposited by the plasma‐enhanced chemical vapor deposition method is the most widely used antireflection coating for crystalline silicon solar cells. In this work, we employed double‐layered silicon nitride coating consisting of a top layer with a lower refractive index and a bottom layer (contacting the silicon wafer) with a higher refractive index for multicrystalline silicon solar cells. An optimization procedure was presented for maximizing the photovoltaic performance of the encapsulated solar cells or modules. The dependence of their photovoltaic properties on the thickness of silicon nitride coatings was carefully analyzed. Desirable thicknesses of the individual silicon nitride layers for the double‐layered coatings were calculated. In order to get statistical conclusions, we fabricated a large number of multicrystalline silicon solar cells using the standard production line for both the double‐layered and single‐layered antireflection coating types. On the cell level, the double‐layered silicon nitride antireflection coating resulted in an increase of 0.21%, absolute for the average conversion efficiency, and 1.8 mV and 0.11 mA/cm2 for the average open‐circuit voltage and short‐circuit current density, respectively. On the module level, the cell to module power transfer factor was analyzed, and it was demonstrated that the double‐layered silicon nitride antireflection coating provided a consistent enhancement in the photovoltaic performance for multicrystalline silicon solar cell modules than the single‐layered silicon nitride coating. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The photovoltaic (PV) market is experiencing vigorous growth, whereas prices are dropping rapidly. This growth has in large part been possible through public support, deserved for its promise to produce electricity at a low cost to the environment. It is therefore important to monitor and minimize environmental impacts associated with PV technologies. In this work, we forecast the environmental performance of crystalline silicon technologies in 2020, the year in which electricity from PV is anticipated to be competitive with wholesale electricity costs all across Europe. Our forecasts are based on technological scenario development and a prospective life cycle assessment with a thorough uncertainty and sensitivity analysis. We estimate that the energy payback time at an in‐plane irradiation of 1700 kWh/(m2 year) of crystalline silicon modules can be reduced to below 0.5 years by 2020, which is less than half of the current energy payback time. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Plastic‐based photovoltaic (PV) technology, also known as organic photovoltaic (OPV), has the development promise to be one of the third PV generation technologies, practically where sunlight reaches a surface area both indoors and outdoors. This paper presents the economic forecast for solar electricity using OPV technology based on a 1 kWp domestic system. With reference to OPV roll‐to‐roll manufacturing, the paper discusses lifetime, efficiency, and costs factors of this emerging PV technology. Taking an outlook of historic PV technology developments and reflect future anticipated technology developments, the future levelised electricity cost is calculated using system life cycle costing techniques. Grid parity at levelised electricity cost below 25 c/kWh may already be reached within 10 years' time, and the technology would have been widespread, assuming a typical southern Europe average solar irradiance of 1700 kWh/m2/year. The influence of solar irradiance and the way the module performs over long periods of time expecting various degradation levels is studied using sensitivity analysis. Eventually, the financial attractiveness to mature silicon‐based PV technology may decline suddenly as financial support schemes such as the popular Feed‐in‐Tariffs dry out. This would give rise to other promising solutions that have already been proven to be less energy intensive and cheaper to produce but may require a different integration model than present technologies. This paper demonstrates that under no financial support schemes emerging PV technologies such as OPV will manage to attract business and further developments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
In this work, the way in which ambient moisture impacts the photovoltaic performance of conventional PCBM and emerging polymer acceptor–based organic solar cells is examined. The device performance of two representative p‐type polymers, PBDB‐T and PTzBI, blended with either PCBM or polymeric acceptor N2200, is systemically investigated. In both cases, all‐polymer photovoltaic devices processed from high‐humidity ambient conditions exhibit significantly enhanced moisture‐tolerance compared to their polymer–PCBM counterparts. The impact of moisture on the blend film morphology and electronic properties of the electron acceptor (N2200 vs PCBM), which results in different recombination kinetics and electron transporting properties, are further compared. The impact of more comprehensive ambient conditions (moisture, oxygen, and thermal stress) on the long‐term stability of the unencapsulated devices is also investigated. All‐polymer solar cells show stable performance for long periods of storage time under ambient conditions. The authors believe that these findings demonstrate that all‐polymer solar cells can achieve high device performance with ambient processing and show excellent long‐term stability against oxygen and moisture, which situate them in an advantageous position for practical large‐scale production of organic solar cells.  相似文献   

18.
Fracture of silicon crystalline solar cells has recently been observed in increasing percentages especially in solar photovoltaic (PV) modules involving thinner silicon solar cells (<200 μm). Many failures due to fracture have been reported from the field because of environmental loading (snow, wind, etc.) as well as mishandling of the solar PV modules (during installation, maintenance, etc.). However, a significantly higher number of failures have also been reported during module encapsulation (lamination) indicating high residual stress in the modules and thus more prone to cell cracking. We report here, through the use of synchrotron X‐ray submicron diffraction coupled with physics‐based finite element modeling, the complete residual stress evolution in mono‐crystalline silicon solar cells during PV module integration process. For the first time, we unravel the reason for the high stress and cracking of silicon cells near soldered inter‐connects. Our experiments revealed a significant increase of residual stress in the silicon cell near the solder joint after lamination. Moreover, our finite element simulations show that this increase of stress during lamination is a result of highly localized bending of the cell near the soldered inter‐connects. Further, the synchrotron X‐ray submicron diffraction has proven to be a very effective way to quantitatively probe mechanical stress in encapsulated silicon solar cells. Thus, this technique has ultimately enabled these findings leading to the enlightening of the role of soldering and encapsulation processes on the cell residual stress. This model can be further used to suggest methodologies that could lead to lower stress in encapsulated silicon solar cells, which are the subjects of our continued investigations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents an environmental comparison based on life cycle assessment (LCA) of the production under average European circumstances and use in The Netherlands of modules based on two kinds of III–V solar cells in an early development stage: a thin‐film gallium arsenide (GaAs) cell and a thin‐film gallium‐indium phosphide/gallium arsenide (GaInP/GaAs) tandem cell. A more general comparison of these modules with the common multicrystalline silicon (multi‐Si) module is also included. The evaluation of the both III–V systems is made for a limited industrial production scale of 0·1 MWp per year, compared to a scale of about 10 MWp per year for the multi‐Si system. The here considered III–V cells allow for reuse of the GaAs wafers that are required for their production. The LCA indicates that the overall environmental impact of the production of the III–V modules is larger than the impact of the common multi‐Si module production; per category their scores have the same order of magnitude. For the III–V systems the metal‐organic vapour phase epitaxy (MOVPE) process is the main contributor to the primary energy consumption. The energy payback times of the thin‐film GaAs and GaInP/GaAs modules are 5·0 and 4·6 years, respectively. For the multi‐Si module an energy payback time of 4·2 years is found. The results for the III–V modules have an uncertainty up to approximately 40%. The highly comparable results for the III–V systems and the multi‐Si system indicate that from an environmental point of view there is a case for further development of both III–V systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents the optimal sizing and life cycle assessment of residential photovoltaic (PV) energy systems. The system consists of PV modules as the main power producer, and lead–acid batteries as the medium of electricity storage, and other essential devices such as an inverter. Five‐parameter analytic PV cell model is used to calculate the energy production from the modules. Electrical needs for a family living under normal conditions of comfort are modelled and used within simulation of the system performance, with an average daily load of approximately 9·0 kWh. The system's performance simulations are carried out with typical yearly solar radiation and ambient temperature data from five different sites in Turkey. The typical years are selected from a total of 6 years data for each site. The life cycle cost of the PV system is analysed for various system configurations for a 20‐year system life. The role of the batteries in PV energy systems are analysed in terms of the cost and power loss. The system performance is analysed as a function of various parameters such as energy production and cost. It is shown that these change substantially for different system configurations and locations. The life cycle assessment of the energy system described was also carried out to determine the environmental impact. It was found that, with the conservative European average electricity mix, energy pay back time (EPBT) is 6·2 years and CO2 pay back time is 4·6 years for the given system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号