首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A diode-pumped doubly Q-switched Nd∶YAG laser operating at 1064nm both with an acoustic-optical(AO)modulator and Cr4+∶YAG saturable absorber in the cavity is demonstrated.At the incident pump power of 11.8W the laser can generate stable 8ns pulse with the peak power of 23.6kW at a 10kHz repetition rate.The pulse temporal profile is more symmetric and shorter compared with that of passively Q-switched lasers with only AO-active and Cr4+∶YAG.A reasonable analysis is developed to explain the experimental resul...  相似文献   

2.
The passively Q-switched and mode-locked(QML) characteristics in a diode-pumped Nd∶GdVO_4 laser with Cr~(4+)∶YAG saturable absorbers have been demonstrated. A maximum average output power of 710mW has been obtained in the QML laser. The maximum energy of a single Q-switched pulse is 52.5μJ, with the corresponding pulse width of 30ns and the peak power of 1.75kW, at the incident pump power of 7.75W. The repetition rates of the Q-switched envelope and the mode-locked laser pulse are 16.7kHz and 680MHz, respectively.  相似文献   

3.
The passively Q-switched and mode-locked (QML) characteristics in a diode-pumped Nd: GdVO4 laser with Cr^4+: YAG saturable absorbers have been demonstrated. A maximum average output power of 710 mW has been obtained in the QML laser. The maximum energy of a single Q-switched pulse is 52.5μJ, with the corresponding pulse width of 30 ns and the peak power of 1.75 kW, at the incident pump power of 7. 75 W. The repetition rates of the Q-switched envelope and the mode-locked laser pulse are 16.7 kHz and 680 MHz, respectively.  相似文献   

4.
Proposed is a novel optical pulse compression technique based on high-doped erbium fiber amplifier and standard single-mode fiber(SMF). We used the amplifier with the erbium ion concentration of 6.3)〈 10^-3 to amplify a hyperbolic secant pulse from a regeneratively mode-locked fiber laser. The central wavelength, pulsewidth and peak power of the pulse are 1 550 nm, 12. 5 ps and 3 mW, respectively. Then the amplified pulse with peak power level corresponding to a higher-order soliton is compressed when it propagates through a 3-km-long single-mode fiber. Studied are the compressed pulses under different pump powers and fiber lengths. The results show that it can get a narrower pulse, and solve the difficulty that pulses at low power can not be compressed directly in the fiber. And the construct is compact.  相似文献   

5.
The laser induced breakdown spectroscopy(LIBS) is an element analysis technique with the advantages of real time detection,simultaneous multi-element identification,and in-situ and stand-off capacities.To evaluate its potential of ocean applications,in this paper,the time resolved laser-induced breakdown spectroscopy for calcium concentration detection in water is investigated.With the optimum experimental parameters,the plasma emission lifetime is determined to be about 500 ns with 532 nm laser excitation,and 1000 ns with 1064 nm laser excitation.The lowest detection concentration of 50 ppm is achieved for calcium detection in CaCl2 water solution using the 532 nm LIBS.Even better detection sensitivity is achieved using the 1064 nm LIBS,and the resulted lowest detection concentration of calcium is 25 ppm.The results suggest that it is feasible to develop LIBS as an on-line sensor for metal element monitoring in the sea.  相似文献   

6.
The effects of linear doping profile near the source and drain contacts on the switching and high- frequency characteristics for conventional single-material-gate CNTFET (C-CNTFET) and hetero-material-gate CNTFET (HMG-CNTFET) have been theoretically investigated by using a quantum kinetic model. This model is based on two-dimensional non-equilibrium Green's functions (NEGF) solved self-consistently with Poisson's equations. The simulation results show that at a CNT channel length of 20 nm with chirality (7, 0), the intrinsic cutoff frequency of C-CNTFETs reaches up to a few THz. In addition, a comparison study has been performed between C-and HMG-CNTFETs. For the C-CNTFET, results reveal that a longer linear doping length can improve the cutoff frequency and switching speed. However, it has the reverse effect on on/off current ratios. To improve the on/off current ratios performance of CNTFETs and overcome short-channel effects (SCEs) in high-performance device applications, a novel CNTFET structure with a combination of an HMG and linear doping profile has been proposed. It is demonstrated that the HMG structure design with an optimized linear doping length has improved high-frequency and switching performances as compared to C-CNTFETs. The simulation study may be useful for understanding and optimizing high-performance of CNTFETs and assessing the reliability of CNTFETs for prospective applications.  相似文献   

7.
In this paper, an actively Q-switched wavelength injection locking random fiber laser (RFL) based on random phase-shifted fiber Bragg grating (RPS-FBG) is proposed, and the performance of the laser is verified by experiments. Within the reflection bandwidth range of RPS-FBG, spanning from 1 549.2 nm to 1 549.9 nm, different laser modes with stable central wavelength and peak power can be selectively chosen by varying the injected light wavelength. The power fluctuation within 1 h is less than 0.1 dBm, and the central wavelength drift is less than 0.02 nm. When the pump power increases from 90 mW to 300 mW, the pulse width decreases from 3.2 μs to 1.5 μs, and the pulse repetition frequency is 20 kHz. The RFL can reach a stable locking state at the lowest pump power of 100 mW and the lowest injection power of 3 dBm. When the wavelength is locked, the output pulse is a single pulse. On the contrary, the unlocked output pulse is multi-pulse. The laser has the characteristics of high wavelength tunability in the reflection range of RPS-FBG and it can be an ideal light source in the fields of laser imaging and pulse coding.  相似文献   

8.
A diode-pumped Nd: YAG acousto-optically(A-O) Q-switched laser at wavelength 946 nm formed with a simple plane-plane cavity has been demonstrated. The maximum average output power was 850 mW. The highest peak power was 531 W with the pulse repetition rate of 20 kHz and pulse width of 80 ns at the incident pump power of 19.5 W.  相似文献   

9.
In this paper, we describe the basic principles and system design of continuous wave cavity ring-down spectroscopy (CW-CRDS). We also particularly study the nature and the behavior of a novel method to detune a laser and apply it to a cavity ring-down spectroscopy experiment. Both simulations and experiments are completed on the relation between the transmission characteristic and different reflectivities, as well as scanning speed. Output electric field equation is deduced. It has been investigated that how photons are coupled to the cavity and how to accumulate the intensity and leak out of the cavity as a function of time. It is noted that both accumulation of intensity and decay times decrease, and the oscillation amplitude increases as the reflectivity increases. Relative intensity increases with decreasing scanning velocity. Additionally, the simulations show that a non-detuned cavity displays the transmitted signals which are highly dependent on the mirror reflectivity and piezoelectric translator (PZT) modulation speed. Simulations also display that the laser switching off is different from detuning.  相似文献   

10.
Thin film transistors (TFTs) of microcrystalline silicon (μc-Si) can provide higher mobility and stability than that of a-Si and better uniformity than that of poly-Si TFTs, and it would be more suitable to be applied to larger-area AMOLEDs. By using 2coYAG laser ann. ealing, crystalline μc-Si thin film on plastic substrate has been investigated and the proper laser energy needed for crystallization has been indicated. It has been found that the dehydrogenation process at 300-450℃ for a few of hours could be omitted by decreasing the H content in the crystallization precursor, which is suitable for laser crystallization on plastic substrates. The crystalline volume fraction (Xc) and the grain size of the resulted μc-Si could be adjusted by controlling the laser energy. By this method, the μc-Si on plastic substrate with Xc and grain size is respectively 85% (at the maximum) and 50 nm.  相似文献   

11.
Thin film transistors (TFTs) of microcrystalline silicon (μc-Si) can provide higher mobility and stability than that of a-Siand better uniformity than that of poly-Si TFTs,and it would be more suitable to be applied to larger-area AMOLEDs.By using 2ωYAG laser annealing,crystalline μc-Si thin film on plastic substrate has been investigated and the proper laser energy needed for crystallization has been indicated.It has been found that the dehydrogenation process at 300-450℃ for a few of hours could be omitted by decreasing the H content in the crystallization precursor,which is suitable for laser crystallization on plastic substrates.The crystalline volume fraction (Xc) and the grain size of the resulted μc-Si could be adjusted by controlling the laser energy.By this method,the μc-Si on plastic substrate with Xc and grain size is respectively 85% (at the maximum) and 50 nm.  相似文献   

12.
Passively Q-switched thulium doped fiber laser (TDFL) has been successfully demonstrated using gold nanoparticles (GNPs), which were embedded into polyvinyl alcohol as saturable absorber (SA). The stable self-starting Q-switched laser was generated to operate at 1 891 nm when a tiny piece of the prepared film was slot in between two fiber ferrules and incorporated into the laser cavity. The repetition rate can be adjusted from 48.54 kHz to 49.64 kHz while the pulse width decreased from 3.52 μs to 2.38 μs with the increase of 1 550 nm pump power from 840 mW to 930 mW. The corresponding pump power output power linearly increased from 3.62 mW to 6.3 mW with a slope efficiency of 2.53%. The maximum peak power and pulse energy were recorded at about 39 mW and 0.12 µJ, respectively at pump power of 930 mW. The Q-switching operation was caused by the surface plasmon resonance absorption of GNPs.  相似文献   

13.
Large-scale synthesis of single-crystal CdSe nanoribbons is achieved by a modified thermal evaporation method, in which two-step-thermal-evaporation is used to control CdSe sources' evaporation. The synthesized CdSe nanoribbons are usually several micrometers in width, 50 nm in thickness, and tens to several hundred micrometers in length. Studies have shown that high-quality CdSe nanoribbons with regular shapes can be obtained by this method. Room-temperature photolumines-cence indicates that the lasing emission at 710 nm has been observed under optical pumping (266 nm) at power densities of 25-153 kW/cm^2. The full width half maximum (FWHM) of the lasing mode is 0.67 nm  相似文献   

14.
We demonstrate a laser-diode(LD)pumped actively Q-switched laser with Nd:Sc0.2Y0.8Si O5(Nd:SYSO)crystal for the first time.A stable actively Q-switched laser is obtained at dual wavelengths of 1 075.2 nm and 1 078.2 nm.The maximum average output power of 720 m W is obtained at the repetition rate of 15 k Hz under the pump power of8.7 W.The minimum pulse width of 58 ns is obtained at the repetition rate of 5 k Hz under the pump power of 8.7 W,corresponding to the peak power of 1.9 k W and the pulse energy of 112μJ.  相似文献   

15.
According to Maxwell's theory, the optical transmission characteristics in GeSi/Si superlattice nanocrystalline layer have been analyzed and calculated. The calculated result shows that when the total thickness L is 340 nm, the single mode lightwave can be transmitted only at periodic number M≥15.5. In addition, at the direction of transmission, when the transmission distance is larger than 500 μm, the lightwave intensity is decreased greatly. Based on the above parameters, the design and manufacture of GeSi/Si superlattice nanocrystalline photodetector are carried out.  相似文献   

16.
The Ti: sapphire laser pumped Yb: YAG passively- Q- switched laser with Cr4 +: YAG as a saturable absorber experiment was performed. The Mira 900 tunable Ti:sapphire laser with an output power up to 1 W was used as a pump source. The optical pump system was composed of a spherical lens (f = 75 mm) for focusing the pump beam to a circular spot with a diameter of about 50μm, the pumping power was measured to be up to 920 mW. The laser cavity was configured to be semispherical, and was formed by the 50 mm curvature radius mirror Mi and the flat mirror M2. Mirror Mt, one face was coated for high transmission at 940 nm and the other face was coated for total reflection at 940 nm and 1.03 μm, was placed on the front of the input facet of the Yb: YAG crystal. The Yb: YAG gain medium is doped with 20 at. - % Yb3+, no concentration quenching of the upper-state lifetime has been observed in this crystal. The Yb: YAG gain element is 8 × 8 × 0.5 mm3 thick and is polished flat and paralld. It is coated on one face of the crystal for high transmission at 940 nm and at 1030 nm, the other surface of the crystal is coated for total reflection at 940 nm and at 1030 nm. Mirror M2 was coated for total reflection at 940 nm and reflectivity of 97% at 1.03 μm acting as an output coupler. The overal cavity length is 23 cm. More than 90% of the laser pumping power was absorbed by the Yb: YAG crystal. The laser operation was performed at 278 K by using the constant-temperature water-cooled circulation with a copper surface. The Cr4+: YAG saturable absorber was placed tightly dose to Yb: YAG sample. This provided a train of pulsesat 1.03 μm with a pulse duration (FWHM) decreasing from 0.6 μs to 0.4 μs and a repetition rate increasing from 20 kHz to 50 kHz. The maximum average power of 53 mW is attained when the pmping power is 730 mW. The slope efficiency is about 16%.  相似文献   

17.
The concentrations of CO2 were measured by the supercontinuum laser at normal temperature and variable temperature accurately in this paper. The absorption spectra of CO2 at different concentrations(1.2%—9.0%) were measured in the wavelength range of 1 425—1 445 nm under the optical path of 26.4 m at 293 K and 1 atm. The experimental results showed that the positions of the primary and secondary absorption peaks(1 432 nm, 1 437 nm) were consistent with the HITRAN database. A linear model of concentration and signal intensity at 1 432 nm was established. The maximum relative error of the concentration measurement was 3.3%. The line intensities of 99.9% CO2 in the 1 425—1 445 nm at different temperatures(298—373 K, interval of 15 K) were measured. The influence of temperature changes on the concentration measurement result was corrected and the relative error of the concentration measurement was reduced to 1.4%. Finally, the source of the uncertainty of the entire spectrum measurement system was analyzed and evaluated. This paper demonstrate that the supercontinuum laser can achieve the long-distance measurement of the CO2 under normal temperature or variable temperature environment accurately, which provide an important reference for the long-distance gas detection on site and simultaneous detection of multi-component gases.  相似文献   

18.
The coupled DBR LED with one DBR for reflecting normal incidence light and the other for reflecting inclined incidence light has been grown by MOCVD. For improving the conventional DBR which was used to increase light extraction efficiency in AlGaInP red light LED is analyzed. At 20 mA Dc injection current, the LED peak wave length is 630 nm, and the light intensity of on axis is 137 mcd. The output light power is 2.32 mW. The light intensity and output light power have been improved compared with the conventional LEDs.  相似文献   

19.
980nm垂直腔面发射激光器线阵及其温度特性研究   总被引:1,自引:0,他引:1  
A 980 nm bottom-emitting vertical-cavity surface-emitting laser linear array with high power density and a good beam property of Gaussian far-field distribution is reported. This array is composed of five linearly arranged elements with a 200 μm diameter one at the center, the other two 150μm and 100μm diameter ones at both sides of the center with center to center spacing of 300μm and 250μm, respectively. A power of 880 mW at a current of 4 A and a corresponding power density of up to 1 kW/cm^2 is obtained. The temperature dependent characteristics of the linear array are investigated. The thermal interaction between the individual elements of the VCSEL linear array is smaller due to its optimized element size and device spacing, which make it more suitable for high power applications. A peak power of over 20 W has been achieved in pulsed operation with a 60 ns pulse length and a repetition frequency of 1 kHz.  相似文献   

20.
A dual mode charge pump to produce an adaptive power supply for a class G audio power amplifier is presented.According to the amplitude of the input signals,the charge pump has two level output voltage rails available to save power.It operates both in current mode at high output load and in pulse frequency modulation (PFM) at light load to reduce the power dissipation.Also,dynamic adjustment of the power stage transistor size based on load current at the PFM mode is introduced to reduce the output voltage ripple and prevent the switching frequency from audio range.The prototype is implemented in 0.18μm 3.3 V CMOS technology.Experimental results show that the maximum power efficiency of the charge pump is 79.5%@ 0.5x mode and 83.6%@ lx mode.The output voltage ripple is less than 15 mV while providing 120 mA of the load current at PFM control and less than 18 mV while providing 300 mA of the load current at current mode control.An analytical model for ripple voltage and efficiency calculation of the proposed PFM control demonstrates reasonable agreement with measured results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号