首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Surface passivation by SiN x films is indispensable for high-power operation of AlGaN/GaN heterojunction field-effect transistors (HFETs) since it can effectively suppress collapse in the drain current. So far, the plasma-enhanced chemical vapor deposition technique has been used for the SiN x deposition; however, possible damage induced by the plasma processing may affect direct-current performance or reliability. In this paper, we present subsequent deposition of SiN x ultrathin films on AlGaN/GaN in the same metalorganic chemical vapor deposition reactor. It is experimentally found that this in situ SiN x passivation doubles the sheet carrier density at the AlGaN/GaN interface from that of the unpassivated sample. High-resolution cross-sectional transmission electron microscopy reveals that in situ SiN x is crystallized on the AlGaN layer as island-like structures via the Stranski-Krastanov growth mode. The lattice constants of in situ SiN x are estimated to be a ≈ 3.2 Å and c ≈ 2.4 Å, which are quite different from those of well-known Si3N4 crystal structures. First-principles calculation predicts that the crystal structure of in situ SiN x is the defect wurtzite structure, which well explains the experimental results. The passivation technique using crystalline SiN x films would be promising for high-power and high-frequency applications of AlGaN/GaN HFETs.  相似文献   

2.
A mechanism of charge transport in Au-TiB x -n-GaN Schottky diodes with a space charge region considerably exceeding the de Broglie wavelength in GaN is studied. Analysis of temperature dependences of current-voltage (I–V) characteristics of forward-biased Schottky barriers showed that, in the temperature range 80–380 K, the charge transport is performed by tunneling along dislocations intersecting the space charge region. Estimation of dislocation density ρ by the I–V characteristics, in accordance with a model of tunneling along the dislocation line, gives the value ρ ≈ 1.7 × 107 cm?2, which is close in magnitude to the dislocation density measured by X-ray diffractometry.  相似文献   

3.
By analyzing time-resolved and steady-state photoluminescence spectra, it is established that the spatial distribution of rare-earth ion dopants in wurtzite GaN crystals doped with Sm, Eu, Er, or Tm is governed by the type and concentration of defects in the initial semiconductor matrix as well as by the type of the impurity (its capacity for segregation). Doping with multicharged rare-earth impurities and additionally introduced Zn impurity leads to an intensification of emission. The effect of intensification of emission in the case of n-and p-GaN crystals is considered with the use of the model of isoelectronic traps.  相似文献   

4.
White electroluminescence (EL) from ZnO/GaN structures fabricated by pulsed laser deposition of ZnO:In onto GaN:Mg/GaN structures MOCVD-grown on Al2O3 substrates has been observed. The white light is produced by superposition of the two strongest emission lines, narrow blue and broad yellow, peaked at 440 and 550 nm, respectively. The intensity ratio of different EL lines from ZnO/GaN/Al2O3 structures depends on the ZnO film quality and drive current. The white EL is due to the high density of structural defects at the n-ZnO/p-GaN interface. A band diagram of the n-ZnO/p-GaN/n-GaN structure is constructed and a qualitative explanation of the EL is suggested.  相似文献   

5.
The nonlinear behavior of the IV characteristics of symmetric contacts between a metal and degenerate n-GaN, which form oppositely connected Schottky diodes, is investigated at free-carrier densities from 1.5 × 1019 to 2.0 × 1020 cm–3 in GaN. It is demonstrated that, at an electron density of 2.0 × 1020 cm–3, the conductivity between metal (chromium) and GaN is implemented via electron tunneling and the resistivity of the Cr–GaN contact is 0.05 Ω mm. A method for determining the parameters of potential barriers from the IV characteristics of symmetric opposite contacts is developed. The effect of pronounced nonuniformity of the current density and voltage distributions over the contact area at low contact resistivity is taken into account. The potential-barrier height for Cr–n+-GaN contacts is found to be 0.47 ± 0.04 eV.  相似文献   

6.
High-electron-mobility transistors (HEMTs) based on AlGaN/GaN epitaxial heterostructures are a promising element base for the fabrication of high voltage electronic devices of the next generation. This is caused by both the high mobility of charge carriers in the transistor channel and the high electric strength of the material, which makes it possible to attain high breakdown voltages. For use in high-power switches, normally off-mode GaN transistors operating under enhancement conditions are required. To fabricate normally off GaN transistors, one most frequently uses a subgate region based on magnesium-doped p-GaN. However, optimization of the p-GaN epitaxial-layer thickness and the doping level makes it possible to attain a threshold voltage of GaN transistors close to V th = +2 V. In this study, it is shown that the use of low temperature treatment in an atomic hydrogen flow for the p-GaN-based subgate region before the deposition of gate-metallization layers makes it possible to increase the transistor threshold voltage to V th = +3.5 V. The effects under observation can be caused by the formation of a dipole layer on the p-GaN surface induced by the effect of atomic hydrogen. The heat treatment of hydrogen-treated GaN transistors in a nitrogen environment at a temperature of T = 250°C for 12 h reveals no degradation of the transistor’s electrical parameters, which can be caused by the formation of a thermally stable dipole layer at the metal/p-GaN interface as a result of hydrogenation.  相似文献   

7.
The effect of the composition of the carrier gas on anisotropy of p-GaN growth rates in side-wall metal-organic chemical vapor deposition was studied. p-GaN layers with a nominal thickness of ~400 nm were grown on side-walls of GaAs mesa stripes formed preliminarily by selective-area epitaxy on Si3N4. It is shown that, if hydrogen is used as the carrier gas, the p-GaN growth occurs mainly in the lateral direction, so that the p-GaN layer is either absent or is thin at the top faces of mesa stripes; in contrast, if nitrogen is used as the carrier gas, growth in the normal (0001) direction is prevalent, so that a p-GaN layer is formed at all faces of the mesa stripe. The results of our study are indicative of a significant role of hydrogen in the process of epitaxial growth of GaN and can be used in the development of technology of devices with p-n junctions based on GaN and with the use of selective-area growth.  相似文献   

8.
Gallium nitride (GaN) was doped with Eu, Sm, and Er impurities using the diffusion method. The behavior of rare-earth impurities (the formation of donor or acceptor levels in the GaN band gap) correlates with the total concentration of defects, which is determined from optical measurements, and with the position of the Fermi level in starting and doped crystals. The intensity of emission lines, which are characteristic of the intracenter f-f transition of rare-earth ions, is controlled by the total defect concentration in the starting semiconductor matrix.  相似文献   

9.
Epitaxial GaN layers were grown by hydride vapor phase epitaxy (HVPE) on commercial (CREE Inc., USA) p+-6H-SiC substrates (Na ? Nd ≈ 7.8 × 1017 cms?3) and n+-6H-SiC Lely substrates with a predeposited p+-6H-SiC layer. A study of the electrical properties of the n-GaN/p-SiC heterostructures obtained confirmed their fairly good quality and demonstrated that the given combination of growth techniques is promising for fabrication of bipolar and FET transistors based on the n-GaN/p-SiC heterojunctions.  相似文献   

10.
The reconstruction of shallow-level hydrogen-containing donors in Si is studied. The donors are formed by implantation of low-energy (300 keV) hydrogen ions into the experimental samples and subsequent heat treatment at 450°C. The experiments are carried out for Ag-Mo-Si Schottky diodes and diodes with a shallow (~1 μm) p+-n junction. The concentration and distribution of the donors are determined by applying the method of C–V characteristics at a frequency of 1.2 MHz. An analysis of the temperature dependence of the equilibrium electron concentration shows that the reconstruction of the hydrogen-containing donors can be described under the assumption of recharging of a center with negative effective correlation energy (U < 0). The transformation between two equilibrium configurations of a double hydrogen donor (D B ++ ? D A 0 ) proceeds with the Fermi level position EF = E c ? 0.30 eV. The reconstruction of the donors from a neutral to a doubly charged state (D A 0 D B ++ ) which is stimulated by the capture of minority carriers, is observed at room temperature.  相似文献   

11.
For the first time, the Faraday method is used to measure the temperature dependence of paramagnetic susceptibility χ(T) of (La1 ? x Sr x )0.93MnO3 (x = 0.2, 0.25, or 0.3) manganites in the temperature interval 60–850°C. It is demonstrated that the dependences have two kinks and three linear sections. The kink of curve χ?1(T) is related to polymorphic transformations (Q′Q* and Q* → R) that take place in the crystal lattices of the samples. The main magnetic characteristics of the samples are determined with the least-squares processing of curve χ?1. Is is demonstrated that dependence χ?1(T) obeys the Curie-Weiss law. The energy state of the magnetoactive manganese atom in the Q′-and Q*-phase samples is close to the energy state of a free Mn2+ ion. In the R phase, this state is close to the state of a free Mn3+ ion.  相似文献   

12.
Based on the study of the temperature dependence of resistance of the In-n-GaN alloyed ohmic contacts, it is found that the mechanism of current flow in them substantially depends on the concentration N of uncompensated donors in GaN. At N = 5 × 1016 ? 1 × 1018 cm?3, current mainly flows along the metallic shunts, and at N ? 8 × 1018 cm?3 it flows by tunneling.  相似文献   

13.
The distribution of charged centers N(w), quantum efficiency, and electroluminescence spectra of blue and green light-emitting diodes (LED) based on InGaN/AlGaN/GaN p-n heterostructures were investigated. Multiple InGaN/GaN quantum wells (QW) were modulation-doped with Si donors in GaN barriers. Acceptor and donor concentrations near the p-n junction were determined by the heterodyne method of dynamic capacitance to be about N A ≥ 1 × 1019 cm?3 ? N D ≥ 1 × 1018 cm?3. The N(w) functions exhibited maxima and minima with a period of 11–18 (±2–3 nm) nm. The energy diagram of the structures has been constructed. The shifts of spectral peaks with variation of current (J=10?6–3×10?2 A) are smaller (13–12 meV for blue and 20–50 meV for green LEDs) than the corresponding values for the diodes with undoped barriers (up to 150 meV). This effect is due to the screening of piezoelectric fields in QWs by electrons. The dependence of quantum efficiency on current correlates with the charge distribution and specific features in the current-voltage characteristics.  相似文献   

14.
A study of the current and capacitance dependences on the forward voltage in Au/n-GaN Schottky diodes, the sub-band optical absorption spectra, and the defect photoluminescence in n-GaN bulk crystals and thin layers is reported. It is shown that defect-assisted tunneling is the dominant transport mechanism for forward-biased Schottky contacts on n-GaN. The dependences of the current and capacitance on forward bias reflect the energy spectrum of defects in the band gap of n-GaN: the rise in the density of deep states responsible for yellow photoluminescence in GaN with increasing energy and the steep exponential tail of states with an Urbach energy of E U = 50 meV near the conduction-band edge. A decrease in the frequency of electron hops near the Au/n-GaN interface results in a wide distribution of local dielectric relaxation times and in a dramatic transformation of the electric-field distribution in the space-charge region under forward biases.  相似文献   

15.
Transistors with a high electron mobility based on AlGaN/GaN epitaxial heterostructures are promising component types for creating high-power electronic devices of the next generation. This is due both to a high charge-carrier mobility in the transistor channel and a high electric durability of the material making it possible to achieve high breakdown voltages. For use in power switching devices, normally off GaN transistors operating in the enrichment mode are required. To create normally off GaN transistors, the subgate region on the basis of p-GaN doped with magnesium is more often used. However, optimization of the p-GaN epitaxial-layer thickness and doping level makes it possible to achieve a threshold voltage close to V th = +2 V for the on-mode of GaN transistors. In this study, it is shown that the use of a subgate MIS (metal–insulator–semiconductor) structure involved in p-GaN transistors results in an increase in the threshold voltage for the on-mode to V th = +6.8 V, which depends on the subgate-insulator thickness in a wide range. In addition, it is established that the use of the MIS structure results in a decrease in the initial transistor current and the gate current in the on mode, which enables us to decrease the energy losses when controlling powerful GaN transistors.  相似文献   

16.
The ZnS-CdxHg1?xTe interface was investigated using the capacitance-voltage characteristics of MIS structures in experimental samples. During fabrication of the n+-p junctions based on p-CdxHg1?xTe, the density of states within the range N ss =(1–6)×1011 cm?2 eV?1 at T=78 K was obtained. The experiments showed that the conditions in which n+-p junctions are fabricated only slightly affect the state of the ZnS-CdHgTe interface. The negative voltages of the at bands V FB , even if immediately after deposition of the ZnS films V FB >0, point to the enrichment of the ZnS-p-CdHgTe near-surface layer with majority carriers, specifically, holes. This led to a decrease in the leakage current over the surface. During long-term storage (as long as ~15 years) in air at room temperature, no degradation of differential resistance R d , current sensitivity S i , and detectivity D* of such n+-p junctions with a ZnS protection film was observed.  相似文献   

17.
The results of studying the electrical properties and isochronous annealing of p-ZnSnAs2 irradiated with H+ ions (energy E = 5 MeV, dose D = 2 × 1016 cm?2) are reported. The limiting electrical characteristics of irradiated material (the Hall coefficient R H (D)lim ≈ ?4 × 103 cm3 C?1, conductivity σ (D)lim ≈ 2.9 × 10?2 Ω?1 cm?1, and the Fermi level position F lim ≈ 0.58 eV above the valence-band top at 300 K) are determined. The energy position of the “neutral” point for the ZnSnAs2 compound is calculated.  相似文献   

18.
TlCrS2 and TlCrSe2 crystals were synthesized by solid-state reaction. X-ray diffraction analysis showed that TlCrS2 and TlCrSe2 compounds crystallize in the hexagonal crystal system with lattice parameters a = 3.538 Å, c = 21.962 Å, c/a ≈ 6.207, z = 3; a = 3.6999 Å, c = 22.6901 Å, c/a ≈ 6.133, z = 3; and X-ray densities ρ x = 6.705 and 6.209 g/cm3, respectively. Magnetic and electric studies in a temperature range of 77–400 K showed that TlCrS2 and TlCrSe2 are semiconductor ferromagnets. Rather large deviations of the experimental effective magnetic moment of TlCrS2 (3.26 μB) and TlCrSe2 (3.05 μB) from the theoretical one (3.85 μB) are attributed to two-dimensional magnetic ordering in the paramagnetic region of strongly layered ferromagnets TlCrS2 and TlCrSe2. The effect of the magnetic phase’s transition on the charge transport in TlCrS2 and TlCrSe2 is detected.  相似文献   

19.
Relations that make it possible to use an experimentally measured temperature dependence of carrier concentration to determine the Hubbard energy U and temperature dependence of the Fermi level F for two-electron tin centers in lead selenide are derived. A study of Pb1?x?ySnxNaySe solid solutions shows that their Fermi level in the temperature region 100–600 K lies below the valence band top E v and that their F(T) dependences are linear, with extrapolation to T = 0 yielding E V ?F = 210±10 meV. The Hubbard energy of the two-electron tin centers in PbSe is found to be U = ?80±20 meV.  相似文献   

20.
A possibility to increase the intensity of intracenter transitions of the Eu ion in GaN crystals is investigated via introduction of the additional impurity to vary the local environment of the rare-earth ion. Wurtzite p-GaN crystals were initially doped with Mg and then with Eu. The introduction of the additional Zn impurity leads to a significant increase in the photoluminescence intensity in the range 3580–4250 Å and the long-wavelength spectral range 5400–6237 Å. This phenomenon can be attributed to the manifestation of sensitization of luminescence of optically active intracenter f-f transitions of the Eu3+ ion due to the introduction of the additional impurity, which promotes the formation of complexes of the rare-earth ion with a large capture cross-section of charge carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号