首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To reach necessary end-to-end connectivity between the Internet and wireless sensor networks (WSNs), the Internet Engineering Task Force (IETF) IPv6 over low power wireless personal area network (6LowPAN) working group has been established and introduced an adaptation layer for integration of IEEE 802.15.4 physical layer/media access control (PHY/MAC) layers and the upper layers of any Intemet protocol (IP)-based networks, such as the Internet. The energy efficiency is one of the most important performance measures in WSNs because most sensor nodes are only battery powered so we should reduce the energy consumption to the lowest to extend the life of nodes. Therefore the determination of MAC frame length should be carefully considered since that the radio frequency (RF) module consumes most the energy of a sensor node meanwhile the MAC protocol is the direct controller of RF module. In this paper, we provide a star-shaped 6LowPAN non-beacon mode with unslotted carrier sense multiple access with collision avoidance (CSMA/CA) mechanism to access to the channel and model the stochastic behavior of a target end node as the M/G/1 queuing system. Analytical expressions for some parameters such as channel busy probability, packet loss probability and energy efficiency are obtained in this paper and our analytical results can clearly show the impact of MAC frame length on the energy efficiency of a target node in both ideal and lossy channel.  相似文献   

2.
In this paper, multicarrier code division multiple access (MC-CDMA) modulation is adapted to constitute wireless sensors to improve the monitoring performance of wireless sensor networks (WSNs) for underground coal mine. A subcarrier phase compensation algorithm based on selective mapping (SLM) is proposed to reduce the relatively high PAPR of MC-CDMA signal. To further improve the monitoring performance of the underground MC-CDMA WSNs, a joint cross-layer transmission with time–frequency coded cooperation hybrid automatic repeat request (HARQ) is also proposed. The proposed cross-layer transmission combines time–frequency coded cooperation of physical layer with HARQ of media access control (MAC) layer. In the proposed transmission, the cooperative sensor utilizes time–frequency coded cooperation method to retransmit the monitoring information of source sensor at each retransmission time to obtain the coding gain and spatial diversity gain. Simulation results show that the proposed joint cross-layer transmission for underground coal mine MC-CDMA WSNs based on SLM phase compensation has significantly reduced the PAPR of MC-CDMA signal and improved the monitor performance of the coal mine MC-CDMA WSNs.  相似文献   

3.
The application of wireless sensor networks (WSNs) technology in monitoring systems is demanding more efficient services to fulfill the requirements of the monitoring task. For this purpose, the simultaneous presence of features such as different communication mediums (air and water) used by nodes and various sizes of data generated by heterogeneous nodes are the key obstacles to build a communication protocol, which can ensure the reliable data delivery. This work terms such WSNs as mixed wireless sensor networks (MWSNs) which contains the aforementioned features. In this paper, we introduce a new cross‐layer protocol for mixed wireless sensor network (XMSN) which can adapt these features. The proposed cross layer protocol XMSN for such mixed environment is implemented and analyzed extensively in Castalia simulator. The performance of XMSN is compared with composition of well‐known protocols, namely, CTP plus BoX‐MAC‐2. The result shows that XMSN has better efficiency in terms of end‐to‐end delay, energy consumption, and goodput than that of CTP plus BoX‐MAC‐2 protocol.  相似文献   

4.
Wireless sensor networks (WSNs) are used in a variety of applications to sense and transfer information to the centralized node with energy efficiency increasing the network’s lifespan. Other factors, such as quality of service (QoS) is also important to improve the performance of the WSNs, by increasing throughput and reducing end-to-end delay. In this paper, we evaluate the importance of QoS in the Medium Access Control (MAC) protocol for WSNs using different metrics and parameters such as energy efficiency, throughput, delay, and the network lifespan. We propose a new QoS MAC protocol, “PRIority in Node” (PRIN), using static priority in the source and the intermediate node and priority among the node which is one hop from the sink node to achieve QoS in WSNs. Simulation results are compared with those of the synchronous MAC protocol in terms of QoS parameters to show the improved performance of the proposed MAC protocol.  相似文献   

5.
Power management is an important issue in wireless sensor networks (WSNs) because wireless sensor nodes are usually battery powered, and an efficient use of the available battery power becomes an important concern specially for those applications where the system is expected to operate for long durations. This necessity for energy efficient operation of a WSN has prompted the development of new protocols in all layers of the communication stack. Provided that, the radio transceiver is the most power consuming component of a typical sensor node, large gains can be achieved at the link layer where the medium access control (MAC) protocol controls the usage of the radio transceiver unit. MAC protocols for sensor networks differ greatly from typical wireless networks access protocols in many issues. MAC protocols for sensor networks must have built‐in power conservation, mobility management, and failure recovery strategies. Furthermore, sensor MAC protocols should make performance trade‐off between latency and throughput for a reduction in energy consumption to maximize the lifetime of the network. This is in general achieved through duty cycling the radio transceiver. Many MAC protocols with different objectives were proposed for wireless sensor networks in the literature. Most of these protocols take into account the energy efficiency as a main objective. There is much more innovative work should be done at the MAC layer to address the hard unsolved problems. In this paper, we first outline and discuss the specific requirements and design trade‐offs of a typical wireless sensor MAC protocol by describing the properties of WSN that affect the design of MAC layer protocols. Then, a typical collection of wireless sensor MAC protocols presented in the literature are surveyed, classified, and described emphasizing their advantages and disadvantages whenever possible. Finally, we present research directions and identify open issues for future medium access research. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Effective techniques for extending lifetime in multi-hop wireless sensor networks include duty cycling and, more recently introduced, cooperative transmission (CT) range extension. However, a scalable MAC protocol has not been presented that combines both. An On-demand Scheduling Cooperative MAC protocol (OSC-MAC) is proposed to address the energy hole problem in multi-hop wireless sensor networks (WSNs). By combining an on-demand strategy and sensor cooperation intended to extend range, OSC-MAC tackles the spatio-temporal challenges for performing CT in multi-hop WSNs: cooperating nodes are neither on the same duty cycle nor are they necessarily in the same collision domain. We use orthogonal and pipelined duty-cycle scheduling, in part to reduce traffic contention, and devise a reservation-based wake-up scheme to bring cooperating nodes into temporary synchrony to support CT range extension. The efficacy of OSC-MAC is demonstrated using extensive NS-2 simulations for different network scenarios without and with mobility. Compared with existing MAC protocols, simulation results show that while we explicitly account for the overhead of CT and practical failures of control packets in dense traffic, OSC-MAC still gives 80–200 % lifetime improvement.  相似文献   

7.
Radio frequency energy transfer (RET) has been proposed as a promising solution to power sensor nodes in wireless sensor networks (WSNs). However, RET has a significant drawback to be directly applied to WSNs, i.e., unfairness in the achieved throughput among sensor nodes due to the difference of their energy harvesting rates that strongly depend on the distance between the energy emitting node and the energy harvesting nodes. The unfairness problem should be properly taken into account to mitigate the drawback caused from the features of RET. To resolve this issue, in this paper, we propose a medium access control (MAC) protocol for WSNs based on RET with two distinguishing features: energy adaptive (EA) duty cycle management that adaptively manages the duty cycle of sensor nodes according to their energy harvesting rates and EA contention algorithm that adaptively manages contentions among sensor nodes considering fairness. Through analysis and simulation, we show that our MAC protocol works well under the RET environment. Finally, to show the feasibility of WSNs with RET, we test our MAC protocol with a prototype system in a real environment.  相似文献   

8.
Most applications of Wireless Sensor Networks (WSNs) assume the presence of single-channel Medium Access Control (MAC) protocols. In the usual dense deployment of the sensor networks, single-channel MAC protocols may be deficient because of radio collisions and limited bandwidth. Hence, using multiple channels can significantly improve the performance of WSN. Recent developments in sensor technology, as seen in Crossbow’s MICAz Mote, Rockwell’s WINS nodes and IEEE 802.15.4 Zigbee, have enabled support for multi-channel communications. Several multi-channel MAC protocols with different objectives have been proposed for WSNs in literature. This paper surveys and classifies the state-of-the-art multi-channel MAC protocols that are proposed for WSNs. It first outlines the sensor network properties that are crucial for designing a MAC protocol. It subsequently reviews the existent challenges to design a good multi-channel MAC protocol for the sensor networks. Then, several multi-channel MAC protocols specifically proposed for the WSNs are inspected in detail and compared with each other. Finally, some open issues in this area are outlined for future research.  相似文献   

9.
Technological advances in low-power digital signal processors, radio frequency (RF) circuits, and micromechanical systems (MEMS) have led to the emergence of wirelessly interconnected sensor nodes. The new technological possibilities emerge when a large number of tiny intelligent wireless sensor nodes are combined. The sensor nodes are typically battery operated and, therefore, energy constrained. Hence, energy conservation is one of the foremost priorities in design of wireless sensor networks (WSNs) protocols. Limited power resources and bursty nature of the wireless channel are the biggest challenges in WSNs. Link adaptation techniques improve the link quality by adjusting medium access control (MAC) parameters such as frame size, data rate, and sleep time, thereby improving energy efficiency. In This work, our study emphasizes optimizing WSNs by building a reliable and adaptive MAC without compromising fairness and performance. Here, we present link adaptation techniques at MAC layer to enhance energy efficiency of the sensor nodes. The proposed MAC uses a variable frame size instead of a fixed frame size for transmitting data. In order to get accurate estimations, as well as reducing the computation complexity, we utilize the extended Kalman filter to predict the optimal frame size for improving energy efficiency and goodput, while minimizing the sensor memory requirement. Next, we designed and verified different network models to evaluate and analyze the proposed link adaptation schemes. The correctness of the proposed theoretical models have been verified by conducting extensive simulations. We also prototype the proposed scheme with the MAC protocol on Berkeley Motes. Both prototype and simulation results show that the proposed algorithms improve the energy efficiency by up to 15%.  相似文献   

10.
We propose an address-light, integrated MAC and routing protocol (abbreviated AIMRP) for wireless sensor networks (WSNs). Due to the broad spectrum of WSN applications, there is a need for protocol solutions optimized for specific application classes. AIMRP is proposed for WSNs deployed for detecting rare events which require prompt detection and response. AIMRP organizes the network into concentric tiers around the sink(s), and routes event reports by forwarding them from one tier to another, in the direction of (one of) the sink(s). AIMRP is address-light in that it does not employ unique per-node addressing, and integrated since the MAC control packets are also responsible for finding the next-hop node to relay the data, via an anycast query. For reducing the energy expenditure due to idle-listening, AIMRP provides a power-saving algorithm which requires absolutely no synchronization or information exchange. We evaluate AIMRP through analysis and simulations, and compare it with another MAC protocol proposed for WSNs, S-MAC. AIMRP outperforms S-MAC for event-detection applications, in terms of total average power consumption, while satisfying identical sensor-to-sink latency constraints.  相似文献   

11.
Radio transceivers are the main source of energy consumption in wireless sensor networks (WSNs) where the source of energy supply is non-rechargeable battery. Several MAC protocols have been proposed in order to efficiently conserve energy in the link layer via duty-cycling. Low power listening (LPL) methods have been shown to outperform other schemes in lightly loaded situations which are common in environment monitoring applications. Nonetheless, as the network becomes dense, in LPL protocols such as BMAC a large number of nodes stay awake for each transmission, resulting in high levels of energy consumption. This paper introduces the informative preamble sampling (IPS) protocol in which a transmitter implicitly embeds information about its intended receiver via the power at which the preamble is transmitted. This results in far fewer nodes staying awake for each preamble. Upon hearing the preamble, a receiver executes a decision-making algorithm to decide whether to stay awake. If the decision-making algorithm is too lax, then more nodes stay awake following the preamble. On the other hand if the algorithm is too strict, it is likely that the intended receiver misses the preamble. In this paper we derive the optimal operating points for the IPS protocol. We show analytically that the IPS protocol can achieve a gain in energy by at least a factor of 2 over BMAC. We also conduct extensive simulations to show that IPS can achieve significant energy gains compared to BMAC.  相似文献   

12.
甚低功耗无线通信技术——ZigBe   总被引:2,自引:0,他引:2  
ZigBee技术作为无线传感器网络的主要支撑技术获得人们广泛的关注。完整的ZigBee协议套件由高层应用规范、应用会聚层、网络层、数据链路层和物理层组成。网络层以上协议由ZigBee联盟制订,物理层和媒体访问控制(MAC)层采用IEEE80215.4标准。IEEE802.15.4物理层简单采用比特到符号映射技术、符号到码片序列转换技术、偏移正交相移键控(OQPSK)调制技术,无须信道编码等复杂算法;MAC层采用载波监听多址一冲突避免技术,支持休眠模式。整个协议的设计使得ZigBee技术具有数据传输速率低、功耗低、成本低等特点,更加适合于工业监控系统、传感器网络、家庭监控系统、安全系统等应用。  相似文献   

13.
This paper presents a distributed medium access control (MAC) protocol for low data rate ultra‐wideband (UWB) wireless sensor networks (WSNs), named LA‐MAC. Current MAC proposal is closely coupled to the IEEE 802.15.4a physical layer and it is based on its Impulse‐Radio (IR) paradigm. LA‐MAC protocol amplifies its admission control mechanism with location‐awareness, by exploiting the ranging capability of the UWB signals. The above property leads to accurate interference predictions and blocking assessments that each node in the network can perform locally, limiting at the same time the actions needed to be performed towards the admission phase. LA‐MAC is evaluated through extensive simulations, showing a significant improvement in many critical parameters, such as throughput, admission ratio, energy consumption, and delay, under different traffic load conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Power management is an important issue in wireless sensor networks (WSNs) because wireless sensor nodes are usually battery powered, and an efficient use of the available battery power becomes an important concern specially for those applications where the system is expected to operate for long durations. This necessity for energy efficient operation of a WSN has prompted the development of new protocols in all layers of the communication stack. If the radio transceiver is the most power consuming component of a typical sensor node, large gains can be achieved at the link layer where the medium access control (MAC) protocol controls the usage of the radio transceiver unit.  相似文献   

15.
Low energy consumption is a critical design requirement for most wireless sensor network (WSN) applications. Due to minimal transmission power levels, time-varying environmental factors and mobility of nodes, network neighborhood changes frequently. In these conditions, the most critical issue for energy is to minimize the transactions and time consumed for neighbor discovery operations. In this paper, we present an energy-efficient neighbor discovery protocol targeted at synchronized low duty-cycle medium access control (MAC) schemes such as IEEE 802.15.4 and S-MAC. The protocol effectively reduces the need for costly network scans by proactively distributing node schedule information in MAC protocol beacons and by using this information for establishing new communication links. Energy consumption is further reduced by optimizing the beacon transmission rate. The protocol is validated by performance analysis and experimental measurements with physical WSN prototypes. Experimental results show that the protocol can reduce node energy consumption up to 80% at 1–3 m/s node mobility.  相似文献   

16.
Wireless sensor networks (WSNs), has been under development for a while by the academia and industry. Due to limited computational power, a typical sensor node may experience operational challenges. Moreover, mobility has become an important feature since emergency and healthcare related applications are evolving in WSNs. Consideration of mobile nodes in WSNs introduce new challenges for the designers. In this paper, an enhanced version of T-MAC protocol (a well-known medium access control protocol in WSNs) known as MT-MAC is proposed. Using the capturing fluctuation in RSSI and LQI values of the received SYNC packets, MT-MAC solves high packet drop ratio in T-MAC. By detecting the mobility, a mobile node softly handover to a new virtual cluster without losing connection with other nodes. The performance of the proposed solution is then compared with T-MAC, S-MAC as well as other well-known mobility-aware MAC (MS-MAC) protocol. The simulation results show that the proposed protocol significantly increases the throughput and packet delivery ratio of T-MAC in exchange for a small increase in power consumption. Compared to MS-MAC protocol, the proposed approach can reduce power consumption by 20–65%, and achieve slightly higher packet delivery ratio.  相似文献   

17.
卢艳宏  掌明  冯源 《电讯技术》2012,52(8):1349-1353
针对无线传感器网络MAC协议中存在的能耗问题,提出了能量高效的无线传感器网络混合MAC(EEH-MAC)算法,采用基于TDMA机制的时槽系数动态调整簇内节点的时槽大小来降低数据的传输时延;同时,对部分不需要数据传输的节点不分配时槽来减少能耗;按簇内节点剩余能量系数形成时槽分配顺序来减少状态转换的能耗;在簇头之间采用CSMA/CA机制的随机分配策略进行通信.仿真结果表明,EEH-MAC协议能有效减少能耗并延长网络生命周期.  相似文献   

18.
Currently most wireless sensor network applications assume the presence of single-channel medium access control (MAC) protocols. However, lower sensing range result in dense networks, single-channel MAC protocols may be inadequate due to higher demand for the limited bandwidth. In this paper we proposed a method of multi-channel support for DMAC in Wireless sensor networks (WSNs). The channel assignment method is based on local information of nodes. Our multi-channel DMAC protocol implement channel distribution before message collecting from source nodes to sink node and made broadcasting possible in DMAC. Analysis and simulation result displays this multi-channel protocol obviously decreases the latency without increasing energy consumption.  相似文献   

19.
黄俊霖  董洁  吴垣春  王二伟 《电子科技》2013,26(4):53-54,59
系统使用ZigBee网络实现传感器节点数据与网关的传输,使用ST公司推出的集成以太网MAC层协议的STM32F107控制器和物理层芯片DP83848实现网关数据的转发,并将网关发送来的环境参数数据储存到网络服务器,以方便随时对监测环境参数进行观察。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号