首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Chemical doping is often used to enhance electric conductivity of the conjugated molecule as hole‐transporting material (HTM) for the application in optoelectronics. However, chemical dopants can promote ion migration at the electrical field, which deteriorates the device efficiency as well as increases the fabrication cost. Here, two star HTMs, namely 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenyl‐amine) 9,9′‐spirobifluorene (Spiro‐OMeTAD) and poly(triarylamine) are subjeted to chemical combination to yield dopant‐free N2,N2,N2′,N2′,N7,N7,N7′,N7′‐octakis(4‐methoxyphenyl)‐10‐phenyl‐10H‐spiro[acridine‐9,9′‐fluorene]‐2,2′,7,7′‐tetraamine (SAF‐OMe). The power conversion efficiencies (PCEs) of 12.39% achieved by solar cells based on pristine, dopant‐free SAF‐OMe are among the highest reported for perovskite solar cells and are even comparable to devices based on chemically doped Spiro‐OMeTAD (14.84%). Moreover, using a HTM comprised of SAF‐OMe with an additional dopant results in a record PCE of 16.73%. Compared to Spiro‐OMeTAD‐based devices, SAF‐OMe significantly improves stability.  相似文献   

2.
Dopant‐free hole transport materials (HTMs) are essential for commercialization of perovskite solar cells (PSCs). However, power conversion efficiencies (PCEs) of the state‐of‐the‐art PSCs with small molecule dopant‐free HTMs are below 20%. Herein, a simple dithieno[3,2‐b:2′,3′‐d]pyrrol‐cored small molecule, DTP‐C6Th, is reported as a promising dopant‐free HTM. Compared with commonly used spiro‐OMeTAD, DTP‐C6Th exhibits a similar energy level, a better hole mobility of 4.18 × 10?4 cm2 V?1 s?1, and more efficient hole extraction, enabling efficient and stable PSCs with a dopant‐free HTM. With the addition of an ultrathin poly(methyl methacrylate) passivation layer and properly tuning the composition of the perovskite absorber layer, a champion PCE of 21.04% is achieved, which is the highest value for small molecule dopant‐free HTM based PSCs to date. Additionally, PSCs using the DTP‐C6Th HTM exhibit significantly improved long‐term stability compared with the conventional cells with the metal additive doped spiro‐OMeTAD HTM. Therefore, this work provides a new candidate and effective device engineering strategy for achieving high PCEs with dopant‐free HTMs.  相似文献   

3.
Although several hole‐transporting materials (HTMs) have been designed to obtain perovskite solar cells (PSCs) devices with high performance, the dopant‐free HTMs for efficient and stable PSCs remain rare. Herein, a rigid planar 6,12‐dihydroindeno[1,2‐b]fluorine (IDF) core with different numbers of bulky periphery groups to construct dopant‐free HTMs of IDF‐SFXPh, IDF‐DiDPA, and IDF‐TeDPA is modified. Thanks to the contributions of the planar IDF core and the twisted SFX periphery groups, the dopant‐free IDF‐SFXPh‐based PSCs device achieves a device performance of 17.6%, comparable to the doped 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD)‐based device (17.6%), with much enhanced device stability under glovebox and ambient conditions.  相似文献   

4.
For commercial applications, it is a challenge to find suitable and low‐cost hole‐transporting material (HTM) in perovskite solar cells (PSCs), where high efficiency spiro‐OMeTAD and PTAA are expensive. A HTM based on 9,9‐dihexyl‐9H‐fluorene and N,N‐di‐p‐methylthiophenylamine (denoted as FMT) is designed and synthesized. High‐yield FMT with a linear structure is synthesized in two steps. The dopant‐free FMT‐based planar p‐i‐n perovskite solar cells (pp‐PSCs) exhibit a high power conversion efficiency (PCE) of 19.06%, which is among the highest PCEs reported for the pp‐PSCs based on organic HTM. For comparison, a PEDOT:PSS HTM‐based pp‐PSC is fabricated under the same conditions, and its PCE is found to be 13.9%.  相似文献   

5.
Three new star‐shaped hole‐transporting materials (HTMs) incorporating benzotripyrrole, benzotrifuran, and benzotriselenophene central cores endowed with three‐armed triphenylamine moieties ( BTP‐1 , BTF‐1 , and BTSe‐1 , respectively) are designed, synthesized, and implemented in perovskite solar cells (PSCs). The impact that the heteroatom‐containing central scaffold has on the electrochemical and photophysical properties, as well as on the photovoltaic performance, is systematically investigated and compared with their sulfur‐rich analogue ( BTT‐3 ). The new HTMs exhibit suitable highest‐occupied molecular orbitals (HOMO) levels regarding the valence band of the perovskite, which ensure efficient hole extraction at the perovskite/HTM interface. The molecular structures of BTF‐1 , BTT‐3 , and BTSe‐1 are fully elucidated by single‐crystal X‐ray crystallography as toluene solvates. The optimized (FAPbI3)0.85(MAPbBr3)0.15‐based perovskite solar cells employing the tailor‐made, chalcogenide‐based HTMs exhibit remarkable power conversion efficiencies up to 18.5%, which are comparable to the devices based on the benchmark spiro‐OMeTAD. PSCs with BTP‐1 exhibit a more limited power conversion efficiency of 15.5%, with noticeable hysteresis. This systematic study indicates that chalcogenide‐based derivatives are promising HTM candidates to compete efficiently with spiro‐OMeTAD.  相似文献   

6.
Organo‐lead halide perovskite solar cells (PSCs) have received great attention because of their optimized optical and electrical properties for solar cell applications. Recently, a dramatic increase in the photovoltaic performance of PSCs with organic hole transport materials (HTMs) has been reported. However, as of now, future commercialization can be hampered because the stability of PSCs with organic HTM has not been guaranteed for long periods under conventional working conditions, including moist conditions. Furthermore, conventional organic HTMs are normally expensive because material synthesis and purification are complicated. It is herein reported, for the first time, octadecylamine‐capped pyrite nanoparticles (ODA‐FeS2 NPs) as a bi‐functional layer (charge extraction layer and moisture‐proof layer) for organo‐lead halide PSCs. FeS2 is a promising candidate for the HTM of PSCs because of its high conductivity and suitable energy levels for hole extraction. A bi‐functional layer based on ODA‐FeS2 NPs shows excellent hole transport ability and moisture‐proof performance. Through this approach, the best‐performing device with ODA‐FeS2 NPs‐based bi‐functional layer shows a power conversion efficiency of 12.6% and maintains stable photovoltaic performance in 50% relative humidity for 1000 h. As a result, this study has the potential to break through the barriers for the commercialization of PSCs.  相似文献   

7.
A variety of dopant‐free hole‐transporting materials (HTMs) is developed to serve as alternatives to the typical dopant‐treated ones; however, their photovoltaic performance still falls far behind. In this work, the side chain of a polymeric HTM is engineered by partially introducing diethylene glycol (DEG) groups in order to simultaneously optimize the properties of both the bulk of the HTM layer and the HTM/perovskite interface. The intermolecular π–π stacking interaction in the HTM layer is unexpectedly weakened after the incorporation of DEG groups, whereas the lamellar packing interaction is strengthened. A doubled hole mobility is obtained when 3% of the DEG groups replace the original alkyl side chains, and a champion power conversion efficiency (PCE) of 20.19% (certified: 20.10%) is then achieved, which is the first report of values over 20% for dopant‐free organic HTMs. The device maintains 92.25% of its initial PCE after storing at ambient atmosphere for 30 d, which should be due to the enhanced hydrophobicity of the HTM film.  相似文献   

8.
By doping 2,7‐bis[4‐(N‐carbazole)phenylvinyl]‐9,9′‐spirobifluorene (spiro‐SBCz) into a wide energy gap 4,4′‐bis(9‐carbazole)‐2,2′‐biphenyl (CBP) host, we demonstrate an extremely low ASE threshold of Eth = (0.11 ± 0.05) μJ cm–2 (220 W cm–2) which is the lowest ASE threshold ever reported. In addition, we confirmed that the spiro‐SBCz thin film functions as an active light emitting layer in organic light‐emitting diode (OLED) and a field‐effect transistor (FET). In particular, we succeeded to obtain linear electroluminescence in the FET structure which will be useful for future organic laser diodes.  相似文献   

9.
Developing efficient interfacial hole transporting materials (HTMs) is crucial for achieving high‐performance Pb‐free Sn‐based halide perovskite solar cells (PSCs). Here, a new series of benzodithiophene (BDT)‐based organic small molecules containing tetra‐ and di‐triphenyl amine donors prepared via a straightforward and scalable synthetic route is reported. The thermal, optical, and electrochemical properties of two BDT‐based molecules are shown to be structurally and energetically suitable to serve as HTMs for Sn‐based PSCs. It is reported here that ethylenediammonium/formamidinium tin iodide solar cells using BDT‐based HTMs deliver a champion power conversion efficiency up to 7.59%, outperforming analogous reference solar cells using traditional and expensive HTMs. Thus, these BDT‐based molecules are promising candidates as HTMs for the fabrication of high‐performance Sn‐based PSCs.  相似文献   

10.
Molecularly engineered weakly conjugated hybrid porphyrin systems are presented as efficient sensitizers for solid‐state dye‐sensitized solar cells. By incorporating the quinolizino acridine and triazatruxene based unit as the secondary light‐harvester as well as electron‐donating group at the meso‐position of the porphyrin core, the power conversion efficiencies of 4.5% and 5.1% are demonstrated in the solid‐state devices containing 2,2′,7,7′‐tetrakis (N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spiro bifluorene as hole transporting material. The photovoltaic performance of the triazatruxene donor based porphyrin sensitizer is better than that of the previously published porphyrin molecules exhibiting strongly conjugated push–pull structure. The effect of molecular structure on the optical and electrochemical properties, the dynamics of charge extraction, as well as the photovoltaic performance are systematically investigated, which offers a new design strategy for further refinement of porphyrin molecules.  相似文献   

11.
Organic ionic plastic crystals (OIPCs) are synthesized through a simple metal‐free, cost‐effective approach. The strategized synchronization of electron‐rich phenoxazine with benzimidazolium iodide (OIPC‐I) and bromide (OIPC‐Br) salts lead to enhanced hole mobility and conductivity of OIPCs which is suitable for an efficient alternative to conventional organic hole transporting materials (HTMs) for stable perovskite solar cells (PSCs). The fabricated PSCs with OIPC‐I as hole transporting layer yielded a power conversion efficiency of 15.0% and 18.1% without and with additive (Li salt) respectively, which are comparable with spiro‐OMeTAD based devices prepared under similar conditions. Furthermore, the PSCs with OIPCs show good stability compared to the spiro‐OMeTAD with or without additives. Here, first time benzimidazolium‐based OIPCs have been used as an alternative organic HTM for perovskite solar cells, which opens a window for the design of effective OIPCs for highly efficient PSCs with long‐term stability.  相似文献   

12.
Recently, perovskite solar cells (PSC) with high power‐conversion efficiency (PCE) and long‐term stability have been achieved by employing 2D perovskite layers on 3D perovskite light absorbers. However, in‐depth studies on the material and the interface between the two perovskite layers are still required to understand the role of the 2D perovskite in PSCs. Self‐crystallization of 2D perovskite is successfully induced by deposition of benzyl ammonium iodide (BnAI) on top of a 3D perovskite light absorber. The self‐crystallized 2D perovskite can perform a multifunctional role in facilitating hole transfer, owing to its random crystalline orientation and passivating traps in the 3D perovskite. The use of the multifunctional 2D perovskite (M2P) leads to improvement in PCE and long‐term stability of PSCs both with and without organic hole transporting material (HTM), 2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenyl‐amine)‐9,9′‐spirobifluorene (spiro‐OMeTAD) compared to the devices without the M2P.  相似文献   

13.
The charge‐transport properties of the spiro‐linked compounds 2,2′,7,7′‐tetrakis(diphenylamino)‐9,9′‐spirobifluorene, 2,2′,7,7′‐tetrakis(N,N′‐di‐p‐methylphenylamino)‐9,9′‐spirobifluorene, 2,2′,7,7′‐tetra(m‐tolyl‐phenylamino)‐9,9′‐spirobifluorene, and 2,2′,7,7′‐tetra(N‐phenyl‐1‐naphthylamine)‐9,9′‐spirobifluorene, and their corresponding parent compounds, N,N,N′,N′‐tetraphenylbenzidine, N,N,N′,N′‐tetrakis(4‐methylphenyl)benzidine, and N,N′‐bis(3‐methylphenyl)‐(1,1′‐biphenyl)‐4,4′‐diamine, N,N′‐diphenyl‐N,N′‐bis(1‐naphthyl)‐1,1′‐biphenyl‐4,4′‐diamine, are investigated. The field‐effect mobilities of charge carriers in thin films of the parent compounds are slightly higher than those of the spiro‐linked compounds. However, the transistor action of the parent‐compound thin films vanishes because the films crystallize after being stored in ambient atmosphere for a few days. In contrast, the hole mobilities in thin films of the spiro‐linked compounds do not change significantly after the samples are stored in ambient atmosphere for up to nine months. Also discussed is the temperature dependency of the mobilities of charge carriers, which is presented using two models, namely the Arrhenius and the Gaussian disorder models.  相似文献   

14.
New spiro‐bisilole molecules functionalized with nitrogen‐containing heterocyclic groups including 7‐azaindolyl, indolyl, and 2,2′‐dipyridylamino have been synthesized. These molecules are found to display good chemical and thermal stability. They are luminescent in solution and in the solid state with an emission color ranging from blue–green to yellow, depending on the functional group. In the solid state, they display high photoluminescence quantum efficiency (32–40 %). The electroluminescence properties for one of the new molecules, 2,3,3′,4,4′,5‐hexaphenyl‐2′,5′‐bis(p‐2,2′‐dipyridylaminophenyl)spiro‐bisilole, have been investigated by fabricating single‐layer and double‐layer electroluminescent devices. The double‐layer device, in which N,N′‐bis(1‐naphthyl)‐N,N′‐diphenylbenzidine acts as the hole‐transport layer and the functionalized spiro‐bisilole functions as the emitter (emission wavelength = 566 nm) and the electron‐transport layer, displays a brightness of 8440 cd m–2 at 9 V with a current efficiency of 1.71 cd A–1. No evidence of exiplex emission is observed.  相似文献   

15.
Solid‐state dye‐sensitized solar cells employing a solid organic hole‐transport material (HTM) are currently under intensive investigation, since they offer a number of practical advantages over liquid‐electrolyte junction devices. Of particular importance to the design of such devices is the control of interfacial charge transfer. In this paper, the factors that determine the yield of hole transfer at the dye/HTM interface and its correlation with solid‐state‐cell performance are identified. To this end, a series of novel triarylamine type oligomers, varying in molecular weight and mobility, are studied. Transient absorption spectroscopy is used to determine hole‐transfer yields and pore‐penetration characteristics. No correlation between hole mobility and cell performance is observed. However, it is found that the photocurrent is directly proportional to the hole‐transfer yield. This hole‐transfer yield depends on the extent of pore penetration in the dye‐sensitized film as well as on the thermodynamic driving force ΔGdye–HTM for interfacial charge transfer. Future design of alternative solid‐state HTMs should focus on the optimization of pore‐filling properties and the control of interfacial energetics rather than on increasing material hole mobilities.  相似文献   

16.
An investigation of the function of an indolene‐based organic dye, termed D149, incorporated in to solid‐state dye‐sensitized solar cells using 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxypheny‐amine)‐9,9′‐spirobifluorene (spiro‐OMeTAD) as the hole transport material is reported. Solar cell performance characteristics are unprecedented under low light levels, with the solar cells delivering up to 70% incident photon‐to‐current efficiency (IPCE) and over 6% power conversion efficiency, as measured under simulated air mass (AM) 1.5 sun light at 1 and 10 mW cm?2. However, a considerable nonlinearity in the photocurrent as intensities approach “full sun” conditions is observed and the devices deliver up to 4.2% power conversion efficiency under simulated sun light of 100 mW cm?2. The influence of dye‐loading upon solar cell operation is investigated and the thin films are probed via photoinduced absorption (PIA) spectroscopy, time‐correlated single‐photon counting (TCSPC), and photoluminescence quantum efficiency (PLQE) measurements in order to deduce the cause for the non ideal solar cell performance. The data suggest that electron transfer from the photoexcited sensitizer into the TiO2 is only between 10 to 50% efficient and that ionization of the photo excited dye via hole transfer directly to spiro‐OMeTAD dominates the charge generation process. A persistent dye bleaching signal is also observed, and assigned to a remarkably high density of electrons “trapped” within the dye phase, equivalent to 1.8 × 1017 cm?3 under full sun illumination. it is believed that this localized space charge build‐up upon the sensitizer is responsible for the non‐linearity of photocurrent with intensity and nonoptimum solar cell performance under full sun conditions.  相似文献   

17.
In this work, a series of hole transporting materials with carbazole and triphenylamine cores have been synthesized and characterized. In the carbazole's 3rd and 6th positions, two site tryphenylamine para positions are end capped with the same types of branching derivatives to compare the overall performances of constructed devices. All of our hole transporting materials showed good thermal stabilities without any crystallized features which expressed in higher decomposition temperature (Over 500 °C at 5% weight reduction). All synthesized materials revealed HOMO energy levels between −5.62 and −5.48 eV, which values are lying between HOMO energy values of anode and emission layer; as a result, it made an effective path for hole transportation. Higher lying LUMO values between −2.51 and −2.31 can block the electrons from adjacent layer to ensure the perfect recombination in the middle layer. Triphenylamine based HTMs indicated better performances than carbazole based HTMs. Further comparisons were done by using NPB as hole transporting material with the same red phosphorescent based OLED device. HTM2A based device IV was exhibited higher maximum current efficiency of 30.6 cd/A and higher maximum external quantum efficiency of 26.7% than reference NPB based device. Measured Hole mobility value of HTM2A with hole dominant device was 5.3 × 10−4 cm2 V−1 s−1, which was better than NPB. Synthesized HTM2A would be a promising hole transporting material for various phosphorescent based OLEDs.  相似文献   

18.
Organic–inorganic lead halide perovskite solar cells are promising alternatives to silicon‐based cells due to their low material costs and high photovoltaic performance. In this work, thin continuous perovskite films are combined with copper(I) iodide (CuI) as inorganic hole‐conducting material to form a planar device architecture. A maximum conversion efficiency of 7.5% with an average efficiency of 5.8 ± 0.8% is achieved which, to our knowledge, is the highest reported efficiency for CuI‐based devices with a planar structure. In contrast to related planar 2,2′,7,7′‐tetrakis‐(N,N ‐di‐4‐methoxyphenylamino)‐9,9′‐spirobifluorene (spiro‐OMeTAD)‐based devices, the CuI‐based devices do not show a pronounced hysteresis when tested by scanning the potential in a forward and backward direction. The strong quenching of photoluminescence (PL) signal and comparatively fast decay of open‐circuit voltage demonstrates a more rapid removal of positive charge carriers from the perovskite layer when in contact with CuI compared to spiro‐OMeTAD. A slow response on a timescale of 10–100 s is observed for the spiro‐OMeTAD‐based devices. In comparison, the CuI‐based device displays a significantly faster response as determined through electrochemical impedance spectroscopy (EIS) and open‐circuit voltage decays (OCVDs). The characteristically slow kinetics measured through EIS and OCVD are linked directly to the current–voltage hysteresis.  相似文献   

19.
Solid‐state dye‐sensitized solar cells rely on effective infiltration of a solid‐state hole‐transporting material into the pores of a nanoporous TiO2 network to allow for dye regeneration and hole extraction. Using microsecond transient absorption spectroscopy and femtosecond photoluminescence upconversion spectroscopy, the hole‐transfer yield from the dye to the hole‐transporting material 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9'‐spirobifluorene (spiro‐OMeTAD) is shown to rise rapidly with higher pore‐filling fractions as the dye‐coated pore surface is increasingly covered with hole‐transporting material. Once a pore‐filling fraction of ≈30% is reached, further increases do not significantly change the hole‐transfer yield. Using simple models of infiltration of spiro‐OMeTAD into the TiO2 porous network, it is shown that this pore‐filling fraction is less than the amount required to cover the dye surface with at least a single layer of hole‐transporting material, suggesting that charge diffusion through the dye monolayer network precedes transfer to the hole‐transporting material. Comparison of these results with device parameters shows that improvements of the power‐conversion efficiency beyond ≈30% pore filling are not caused by a higher hole‐transfer yield, but by a higher charge‐collection efficiency, which is found to occur in steps. The observed sharp onsets in photocurrent and power‐conversion efficiencies with increasing pore‐filling fraction correlate well with percolation theory, predicting the points of cohesive pathway formation in successive spiro‐OMeTAD layers adhered to the pore walls. From percolation theory it is predicted that, for standard mesoporous TiO2 with 20 nm pore size, the photocurrent should show no further improvement beyond an ≈83% pore‐filling fraction.  相似文献   

20.
2,7‐Bis(p‐methoxyphenyl‐m′‐tolylamino)‐9,9‐dimethylfluorene ( 1′ ), 2,7‐bis(phenyl‐m′‐tolylamino)‐9,9‐dimethylfluorene ( 2′ ) and 2,7‐bis(p‐fluorophenyl‐m′‐tolylamino)‐9,9‐dimethylfluorene ( 3′ ) have been synthesized using the palladium‐catalyzed reaction of the appropriate diarylamines with 2,7‐dibromo‐9,9‐dimethylfluorene. These molecules have glass‐transition temperatures 15–20 °C higher than those for their biphenyl‐bridged analogues, and are 0.11–0.14 V more readily oxidized. Fluorescence spectra and fluorescence quantum yields for dimethylfluorene‐bridged and biphenyl‐bridged species are similar, but the peaks of the absorption spectra of 1′ – 3′ are considerably red‐shifted relative to those of their biphenyl‐bridged analogues. Time‐of‐flight hole mobilities of 1′ – 3′ /polystyrene blends are in a similar range to those of the biphenyl‐bridged analogues. Analysis according to the disorder formalism yields parameters rather similar to those for the biphenyl species, but with somewhat lower zero‐field mobility values. Density functional theory (DFT) calculations suggest that the enforced planarization of the fluorene bridge leads to a slightly larger reorganization energy for the neutral/cation electron‐exchange reaction than in the biphenyl‐bridged system. Organic light‐emitting diodes have been fabricated using 1′ – 3′ /polystyrene blends as the hole‐transport layer and tris(8‐hydroxy quinoline)aluminium as the electron‐transport layer and lumophore. Device performance shows a correlation with the ionization potential of the amine materials paralleling that seen in biphenyl‐based systems, and fluorene species show similar performance to biphenyl species with comparable ionization potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号