首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Network virtualization (NV) technologies have attracted a lot of attention as an essential solution for future networking infrastructure. The NV enables multiple tenants to share the same physical infrastructure and to create independent virtual networks (VNs) by decoupling the physical network in terms of topology, address, and control functions. One feasible way to realize full NV involves considering solutions based on the software‐defined networking (SDN) paradigm using its programmability. The SDN contributes many benefits to both network operations and management including programmability, agility, elasticity, and flexibility. There are several SDN‐based NV solutions; however, they suffered from a lack of scalability, high availability. Also, they have high latency between control and data plane because of proxy‐based architecture. In this thesis, we introduce a new NV platform, named Open Network Hypervisor (ONVisor). The design objectives include, among the features, (1) multitenancy, (2) scalability, (3) flexibility, (4) isolated VNs, and (5) VN federation. ONVisor was designed and implemented by extending Open Network Operating System, an open‐source SDN controller. The main features of ONVisor are (1) isolated control and data plane per VN, (2) support of distributed operations, (3) extensible translators, (4) on‐platform VN application development and execution, and (5) support of heterogenous SDN data‐plane implementations. Several experiments are conducted on various test scenarios in different test environments in terms of control and data plane performance compared to nonvirtualized SDN network. The results show that ONVisor can provide VNs a little bit lower control plane performance and similar data plane performance.  相似文献   

2.
With the great increase of connected devices and new types of applications, mobile networks are witnessing exponential growth of traffic volume. To meet emerging requirements, it is widely agreed that the fifth‐generation mobile network will be ultradense and heterogeneous. However, the deployment of a high number of small cells in such networks poses challenges for the mobility management, including frequent, undesired, and ping‐pong handovers, not to mention issues related to increased delay and failure of the handover process. The adoption of software‐defined networking (SDN) and network function virtualization (NFV) technologies into 5G networks offers a new way to address the above‐mentioned challenges. These technologies offer tools and mechanisms to make networks flexible, programmable, and more manageable. The SDN has global network control ability so that various functions such as the handover control can be implemented in the SDN architecture to manage the handover efficiently. In this article, we propose a Software‐Defined Handover (SDHO) solution to optimize the handover in future 5G networks. In particular, we design a Software‐Defined Handover Management Engine (SDHME) to handle the handover control mechanism in 5G ultradense networks. The SDHME is defined in the application plane of the SDN architecture, executed by the control plane to orchestrate the data plane. Simulation results demonstrate that, compared with the conventional LTE handover strategy, the proposed approach significantly reduces the handover failure ratio and handover delay.  相似文献   

3.
Mobile Internet traffic is expected to grow faster than the fixed Internet traffic in a near future. Since, today’s broadband networks are approaching theoretical limits in terms of spectral efficiency per link, mobile operators are compelled to seek for new solutions that will be able to accommodate the expected traffic growth and improve their position in the competitive market. Addressing those challenges with current inflexible, not scalable and complex architecture is very hard, if possible at all. Software defined networking (SDN) is a new networking architecture paradigm that holds great promise to overcome many of mentioned limitations and provides required improvements in performance by decoupling control functions from underlying physical infrastructure. In this paper, we explain key reasons for transition to SDN based mobile networks and briefly describe several proposals of design scenario. Special emphasis is placed on SDN’s contribution to more efficient inter-cell interference management, traffic control and network virtualization.  相似文献   

4.
Mobility management applied to the traditional architecture of the Internet has become a great challenge because of the exponential growth in the number of devices that can connect to the network. This article proposes a Software‐Defined Networking (SDN)‐based architecture, called SDN‐DMM (SDN‐Distributed Mobility Management), that deals with the distributed mode of mobility management in heterogeneous access networks in a simplified and efficient way, ensuring mainly the continuity of IP sessions. Intent‐based mobility management with an IP mapping schema for mobile node identification offers optimized routing without tunneling techniques, hence, an efficient use of the network infrastructure. The simplified mobility control API reduces both signaling and handover latency costs and provides a better scalability and performance in comparison with traditional and SDN‐based DMM approaches. An analytical evaluation of such costs demonstrated the better performance of SDN‐DMM, and a proof of concept of the proposal was implemented in a real environment.  相似文献   

5.
The emerging software‐defined networking (SDN) paradigm introduces new opportunities to improve network performance due to the flexibility and programmability provided by a logically centralized element named controller. However, a rapid adoption of the full SDN architecture is difficult in the short term due to economic and technical reasons. This paper faces the SDN nodes replacement problem during the transition from traditional IP networks to fully deployed SDN networks. Six different replacement methods are proposed to select the most appropriate set of traditional IP nodes to be upgraded to SDN‐enabled switches at a particular transition stage. To show the effectiveness of the proposed methods, they have been applied on an optimization problem currently studied by the research community: the power consumption problem. An integer linear programming formulation is presented to solve it and a genetic algorithm is evaluated through simulations on realistic network topologies. Results highlight that energy‐efficiency in hybrid IP/SDN networks can be significantly improved by only replacing a reduced number of IP nodes.  相似文献   

6.
The use of wireless body area networks (WBANs) in healthcare applications has made it convenient to monitor both health personnel and patient status continuously in real time through wearable wireless sensor nodes. However, the heterogeneous and complex network structure of WBANs has some disadvantages in terms of control and management. The software‐defined network (SDN) approach is a promising technology that defines a new design and management approach for network communications. In order to create more flexible and dynamic network structures in WBANs, this study uses the SDN approach. For this, a WBAN architecture based on the SDN approach with a new energy‐aware routing algorithm for healthcare architecture is proposed. To develop a more flexible architecture, a controller that manages all HUBs is designed. The proposed architecture is modeled using the Riverbed Modeler software for performance analysis. The simulation results show that the SDN‐based structure meets the service quality requirements and shows superior performance in terms of energy consumption, throughput, successful transmission rate, and delay parameters according to the traditional routing approach.  相似文献   

7.

Software-defined networking (SDN) is a new approach that overcomes the obstacles which are faced by conventional networking architecture. The core idea of SDN is to separate the control plane from the data plane. This idea improves the network in many ways, such as efficient utilization of resources, better management of the network, reduced cost, innovation with new evolution, and many others. To manage all these changes, there is a great need for an efficient controller to improve the utilization of resources for the better performance of the network. The controller is also responsible for the analysis and monitoring of real-time data traffic. There is a great need for a high-performance controller in networking industries, data centres, academia, and research due to the tremendous growth of distributed processing-based real time applications. Therefore, it is crucial to investigate the performance of an open-source controller to provide efficient traffic routing, leading to improved utilization of resources for the enhanced performance metrics of the network. The paper presents an implementation of SDN architecture using an open-source RYU SDN controller for the network traffic analysis. The proposed work evaluates the performance of SDN architecture based custom network topology for a node to node performance parameters such as bandwidth, throughput and roundtrip time, etc. The simulation results exhibit an improved performance of the proposed work in comparison to the existing default network topology for SDN.

  相似文献   

8.
目前的战术移动自组织网络(Mobile Ad Hoc Network,MANET)在移动性和可达性方面的能力比较好,但是由于其全分布式的控制方式限制了网络容量和扩展性,常规的MANET网络只能用于战术末端的小规模分队,分队间网络互操作能力弱,不适应联合作战的发展趋势。将软件定义网络(Software Defined Network,SDN)技术引入MANET网络,提升了战术网络的灵活性、扩展性和可操作性,但是其在链路、架构、安全等方面面临较大挑战。分析了SDN-MANET网络具体的应用设计问题,根据战术网络特点对控制器部署和设计、控制信号设计、网络健壮性、南向协议改进、混合网络控制五方面问题进行论述,提出了相应的分层次网控器部署、数控信号分离、自主控制机制、混合组网等设计方法,为战术SDN-MANET网络的实现提供了设计参考。  相似文献   

9.
A hardware‐acceleration architecture that separates virtual network functions (VNFs) and network control (called HSN) is proposed to solve the mismatch between the simple flow steering requirements and strong packet processing abilities of software‐defined networking (SDN) forwarding elements (FEs) in SDN/network function virtualization (NFV) architecture, while improving the efficiency of NFV infrastructure and the performance of network‐intensive functions. HSN makes full use of FEs and accelerates VNFs through two mechanisms: (1) separation of traffic steering and packet processing in the FEs; (2) separation of SDN and NFV control in the FEs. Our HSN prototype, built on NetFPGA‐10G, demonstrates that the processing performance can be greatly improved with only a small modification of the traditional SDN/NFV architecture.  相似文献   

10.
Software‐defined networking (SDN) is a new network paradigm that is separating the data plane and the control plane of the network, making one or more centralized controllers to supervise the behaviour of the entire network. Different types of SDN controller software exist, and research dealing with the difficulties of consistently integrating these different controller types has mostly been declared future work. In this paper, the Domino framework is proposed, a pluggable SDN framework for managing heterogeneous SDN networks. In contrast to related work, the proposed framework allows research into SDN networks controlled by different types of SDN controllers attempting to standardize the northbound API of them. Domino implements a microservice plugin architecture where users can link different SDN networks to a processing algorithm. Such an algorithm allows for, eg, adapting the flows by building a pipeline using plugins that either invoke other SDN operations or generic data processing algorithms. The Domino framework is evaluated by implementing a proof‐of‐concept implementation, which is tested on the initial requirements. It achieves the modifiability and the interoperability with an average successful exchange ratio of 99.99%. The performance requirements are met for the frequently used commands with an average response time of 0.26 seconds, and the framework can handle at least 72 plugins simultaneously depending on the available amount of RAM. The proposed framework is evaluated by means of the implementation of a shortest path routing algorithm between heterogeneous SDN networks.  相似文献   

11.
Node energy-limited and mobility,indeed,requirement of customized service,made Ad Hoc press for customization Routing.Based on the core principle of software defined networking (SDN),the control framework and the design of routing creation bran-new approach about Ad Hoc based SDN was analyzed firstly.Secondly,the hierarchical routing model was established,and the problem of routing key nodes and key link centralized selection based on service path was proposed and its algorithm was designed,which could embed customize service into physical networks via nodes mapping based network performance maximization.Finally,it corroborate the advantage of routing implement via SDN in function,performance and the whole networks utilization.Experiments show that the energy consumption of network nodes is more balanced and the overall utilization of the network is nearly 14% higher than the traditional method.  相似文献   

12.
EPC架构核心网组网方式分析   总被引:1,自引:0,他引:1  
为适应无线网络引入LTE技术,核心网分组域将向EPC架构演进,EPC核心网采用控制与承载相分离的架构,其组网模式与现有分组域相比将发生变化。本文针对分组域核心网引入EPC技术后的网络特点,分析EPC核心网内、及其与其它网络间的组网方式,并提出相关建议。  相似文献   

13.
The recent breakthroughs in the automobile industries and telecommunication technologies along with the exceptional multimodal mobility services brought focus on intelligent transportation system (ITS), of which vehicular ad hoc networks (VANETs) gain much more attention. The distinctive features of software‐defined networking (SDN) leverages the vehicular networks by its state of the centralized art having a comprehensive view of the network. Its potential to bring the flexibility, programmability and other extensive advancements to vehicular networks has set the stage for a novel networking paradigm termed as software‐defined vehicular networks (SDVNs). Many researchers have demonstrated the SDN‐based VANETs with the various configuration of the SDN components in VANET architecture. However, a compilation of the work on the SDN‐based VANET system as a whole, incorporating its architecture, use‐cases, and opportunities, is still inadequate. We start with the summary of the recent studies that exist on the SDVNs, followed by the comprehensive explanation of its components. Next, we present the taxonomy of SDVN based on the architecture modes, protocols, access technologies, and opportunities with trending technologies. Finally, we highlight the challenges, open research issues, and future research directions.  相似文献   

14.
Mobility management and handover for a seamless connection are among all‐time challenges of wireless networks. Software‐defined networking (SDN) has opened new horizons toward research by adding intelligence in edge networks while decoupling the control and data planes. The flexibility and centralized nature of SDN further improve the handover decision algorithms. In this paper, we have improved the network performance with respect to the number of handovers and the handover delay by applying an LTE‐SDN architecture and a novel handover decision algorithm based on predicting the future locations of a moving vehicle. The proposed algorithm decouples the handover procedure into two phases of preparation and execution. In the preparation phase, which occurs in the control plane, the handover decision and resource allocation take place, and in the execution phase, handover gets executed similar to the LTE architecture. The results of our research indicate that our proposed LTE‐SDN performance is improved with respect to the number of handovers, handover delay, and signaling overhead by 24%, 16%, and 20%, respectively. On the other hand, average Reference Signal Received Quality (RSRQ) value is decreased by 4% as a tradeoff for the improvements gained.  相似文献   

15.
The integration of 5G networks with cognitive radio (CR) technology enables the software‐defined networking (SDN) infrastructure to support emergency applications. In future, CR can be integrated with 5G and many wireless networks like Wi‐Fi, WSN, and MANET for efficient spectrum utilization with higher data rate and lower latency. This CR technology allows unlicensed users to access the licensed spectrum, whenever it is free. In this paper, an efficient SDN architecture with cognitive ability for emergency network is proposed in which the SDN controller prolong communication between disaster victims and first responders and so the first responders can arrive at the spot directly and rescue the victims. The SDN controller has cognitive ability so that the victims can utilize the vacant licensed band to communicate with the first responders, thereby improving the spectrum utilization of the network. Another two main challenges during emergency are the occurrence of interference and link failure. The proposed dynamic handover algorithm with interference cancellation (DHAIC) cancels the interference between the nodes inside the network and performs dynamic handoff, whenever link failure occurs between the cluster head (CH) and the controller. An optimum throughput and minimal delay is achieved to ensure the network performance.  相似文献   

16.
Software‐defined networks (SDNs) decouple the data plane from the control plane. Thus, it provides logically centralized visibility of the entire networking infrastructure to the controller. It enables the applications running on top of the control plane to innovate through network management and programmability. To envision the centralized control and visibility, the controller needs to discover the networking topology of the entire SDN infrastructure. However, discovering and maintaining a global view of the underlying network topology is a challenging task because of (i) frequently changing network topology caused by migration of the virtual machines in the data centers, mobile, end hosts and change in the number of data plane switches because of technical faults or network upgrade; (ii) lack of authentication mechanisms and scarcity in SDN standards; and (iii) availability of security solutions during topology discovery process. To this end, the aim of this paper is threefold. First, we investigate the working methodologies used to achieve global view by different SDN controllers, specifically, POX, Ryu, OpenDaylight, Floodlight, Beacon, ONOS, and HPEVAN. Second, we identify vulnerabilities that affect the topology discovery process in the above controller implementation. In particular, we provide a detailed analysis of the threats namely link layer discovery protocol (LLDP) poisoning, LLDP flooding, and LLDP replay attack concerning these controllers. Finally, to countermeasure the identified risks, we propose a novel mechanism called TILAK which generates random MAC destination addresses for LLDP packets and use this randomness to create a flow entry for the LLDP packets. It is a periodic process to prevent LLDP packet‐based attacks that are caused only because of lack of verification of source authentication and integrity of LLDP packets. The implementation results for TILAK confirm that it covers targeted threats with lower resource penalty.  相似文献   

17.
安琪  刘艳萍  孙茜  田霖 《电信科学》2016,32(11):119-126
传统网络架构面临着结构封闭僵化、数据传输转发性能高度受限以及资源利用率低等问题,使其不能满足未来多样化的服务需求。为了解决这个问题,引入了网络切片的概念,并将网络功能虚拟化(NFV)与软件定义网络(SDN)等前沿技术相互融合在一起,提出了一个面向未来移动通信的新型网络架构——基于SDN与NFV的网络切片架构。这种新的网络架构能够根据第三方需求来为用户提供个性化的网络服务,实现网络资源的共享和隔离,节省了运营商的在基础设备方面的大量花费。  相似文献   

18.
This paper presents the design and development of a new network virtualization scheme to support multitenant datacenter networking (MT‐DCN) based on software‐defined networking (SDN) technologies. Effective multitenancy supports are essential and challenging for datacenter networking designs. In this study, we propose a new network virtualization architecture framework for efficient packet forwarding in MT‐DCN. Traditionally, an internet host uses IP addresses for both host identification and location information, which causes mobile IP problems whenever the host is moved from one IP subnet to another. Unfortunately, virtual machine (VM) mobility is inevitable for cloud computing in datacenters for reasons such as server consolidation and network traffic flow optimization. To solve the problems, we decouple VM identification and location information with two independent values neither by IP addresses. We redefine the semantics of Ethernet MAC address to embed tenant ID information to the MAC address field without violating its original functionality. We also replace traditional Layer2/Layer3 two‐stage routing schemes (MAC/IP) with an all‐Layer2 packet forwarding mechanism that combines MAC addresses (for VM identification and forwarding in local server groups under an edge switch gateway) and multiprotocol label switching (MPLS) labels (for packet transportation between edge switch gateways across the core label switching network connecting all the edge gateways). To accommodate conventional IP packet architecture in a multitenant environment, SDN (OpenFlow) technology is used to handle all this complex network traffics. We verified the design concepts by a simple system prototype in which all the major system components were implemented. Based on the prototype system, we evaluated packet forwarding efficiency under the proposed network architecture and compared it with conventional IP subnet routing approaches. We also evaluated the incurred packet processing overhead caused by each of the packet routing components.  相似文献   

19.
In view of the problems of low routing efficiency, complex control process, and difficult network management in big data environment in the traditional integrated space‐terrestrial network, in the paper, we propose a satellite network architecture called software‐defined information centric satellite networking (SDICSN) based on software‐defined networking (SDN) and information‐centric networking (ICN), and we design a virtual node matrix routing algorithm (VNMR) under the SDICSN architecture. The SDICSN architecture realizes the flexibility of network management and business deployment through the features of the separation of forwarding and controlling by the SDN architecture and improves the response speed of requests in the network by the centric of “content” as the ICN idea. According to the periodicity and predictability of the satellite network, the VNMR algorithm obtains the routing matrix through the relative orientation of the source and destination nodes, thus reducing the spatial complexity of the input matrix of the Dijkstra algorithm and then reducing the time complexity of the routing algorithm. For forwarding information base (FIB), the mechanism of combination of event driven and polling can be quickly updated in real time. Finally, the advantages of the SDICSN architecture in routing efficiency, request delay, and request aggregation are verified by simulation.  相似文献   

20.
Software‐defined networking (SDN) acts as a centralized management unit, especially in a network with devices that operate under the transport layer of the OSI model. However, when a network with layer 7 middleboxes (MBs) is considered, current SDNs exhibit limitations. As such, to achieve a real‐centralized management unit, a new architecture is required that decouples the data and control planes of all network devices. In this report, we propose such a complementary architecture to the current SDN in which SDN‐enabled MBs are included along with contemporary SDN‐enabled switches. The management unit of this architecture improves network performance and reduces routing cost by considering the status of the MBs during flow forwarding. This unit consists of the following two parts: an SDN controller (SDNC) and a middlebox controller (MBC). The latter selects the best MBs for each flow and the former determines the best path according to its routing algorithm and provides information via the MBC. The results show that the proposed architecture improved performance because the utilization of all network devices including MBs is manageable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号