首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
针对现有的组播拥塞控制机制对接收端可用带宽估计精度较低的问题,提出了一种基于可用带宽测量的分层组播拥塞控制机制ABM-LMCC.在分析了现有可用带宽估计方法不足的基础上,提出一种适用于组播的可用带宽测量算法,并设计了分层组播拥塞控制机制的具体操作规程.通过调节组播数据包的发送间隔,使其呈现降速率的指数分布,从而实现各接收端对可用带宽的准确测量,并根据其测量值迅速调节期望速率,从而达到组播拥塞控制的目的.仿真表明,ABM-LMCC能够有效避免拥塞,提高链路利用率,显著降低丢包率,具有良好的响应性、稳定性.  相似文献   

2.
一种在接收端实现的TCP-Friendly拥塞控制机制   总被引:9,自引:0,他引:9  
本文提出了一种基于速率的单播TCP-Friendly拥塞控制算法——RAAR(Rate Adaptation at Receivers)控制机制.RAAR是一种接收端的速率自适应算法,它抛弃了每包反馈机制,采用GAIMD(General Additive Increase Multiplicative Decrease)策略进行拥塞控制,其主要控制操作由接收方完成.本文建立了简化的数学模型对其进行吞吐量的分析,得到在RAAR中用于TCP-Friendly 的GAIMD拥塞控制中α与 β的关系.通过与TFRC及TEAR这两种重要的TCP-Friendly协议进行对比研究发现,RAAR协议在对TCP协议的友好性,协议内的公平性以及速率的平滑性等方面具有更好的综合性能.由于RAAR不需进行每包反馈,且主要功能在接收方实现,因此可方便地将该机制引入多媒体组播传输系统中.  相似文献   

3.
分层组播是解决组播通信当中底层网络结构异构性,适应网络动态变化的一种最佳解决方案。本论文分析了现有的分层组播技术,介绍了采用主动网进行接收方驱动的分层组播的新方案(RLM-AN)。不同于大多数的分层组播方法的端到端的拥塞控制机制,RLM-AN是分布式的TCP友好的拥塞控制机制。方案中把组播树看成是一组虚拟链路,在每个虚拟链路上进行TCP友好的拥塞控制。通过在网络内部的主动节点处进行拥塞控制,传输系统可以得到更为平滑的和更为TCP友好的吞吐量,以及对网络内部拥塞的快速响应。同时,本论文对RLM-AN在技术细节实现上的若干问题进行了讨论。  相似文献   

4.
王兴伟  高楠  王琦  黄敏 《通信学报》2006,27(Z1):15-19
设计并实现了一种基于IPv6的QoS(quality of service)控制组播路由机制.基于启发式单播路由协议,修改了PIM-SSM协议与MLD协议,实现了IPv6下启发式源特定组播.为提供QoS控制,扩展了RSVP协议,设计了分层组播流量控制机制,基于博弈分析确定为用户预留的带宽量,优化网络提供方与用户方效用.开发了该机制的原型系统并进行了大量试验,结果表明该机制具有良好的性能,能够提供IPv6下的QoS控制组播路由.  相似文献   

5.
分层组播是解决组播通信当中底层网络结构异构性,适应网络动态变化的一种最佳解决方案。本论分析了现有的分层组播技术,介绍了采用主动网进行接收方驱动的分层组播的新方案(RLM-AN)。不同于大多数的分层组播方法的端到端的拥塞控制机制,RLM-AN是分布式的TCP友好的拥塞控制机制。方案中把组播树看成是一组虚拟链路,在每个虚拟链路上进行TCP友好的拥塞控制。通过在网络内部的主动节点处进行拥塞控制,传输系统可以得到更为平滑的和更为TCP友好的吞吐量,以及对网络内部拥塞的快速响应。同时,本论对RLM-AN在技术细节实现上的若干问题进行了讨论。  相似文献   

6.
本文提出一个基于主动网络的大规模可靠组播协议LARMP(Large-scale Active Reliable Multicast Protocol),它较全面地解决了NACK/ACK (Negotiate Acknowledge / Acknowledge Implosion)风暴、选择重发、分布恢复负担、拥塞控制、健壮性这五个Internet上的可靠组播面临的关键问题.LARMP采用一个由四级主动路由器支持的主动组播树结构,利用组播树中的主动路由器实现动态主动组播树的建立和维护、NACK抑制、NACK/ACK聚合、缓存数据报文并为组播树中报文丢失节点恢复报文、及时检测网络拥塞并反馈给发送者以便其调整发送速度等功能.实验测试表明LARMP具有良好性能.  相似文献   

7.
针对分层多播接收者的可用带宽异构性问题,提出了一种自适应动态分层多播拥塞控制算法(ADLM).ADLM自适应地运用最优层输率分配算法来满足接收者的异构性,ADLM可以根据网络情况变化动态地调整分层的数量以及每一分层的层速率.仿真实验表明,该拥塞控制策略比分层组播控制常用的典型策略(RLC)更有效地利用网络带宽,解决网络带宽的异构性问题,同时ADLM是TCP友好的,较好地改进了分层多播拥塞控制的性能.  相似文献   

8.
IP 组播技术是一种可以把单个数据信息同时分发到不同的用户去的网络技术。卫星网络固有的广播信道特性使得它很适合组播应用。然而目前针对卫星网络的可靠组播服务研究很少,虽然已经有一些关于地面Internet组播协议建议,但他们并不适合于卫星网络。在卫星网络组播传输中的一个关键技术是传输协议设计。该文提出一种基于Agent的宽带卫星网络可靠组播传输协议(ASMTP)。该协议利用接收端Agent来实现卫星组播,采用分组级FEC和本地差错恢复纠正传播中的非相关错误和相关错误。在ASMTP中,还实现了流量控制和拥塞控制机制。仿真结果表明,在卫星网络环境中,ASMTP性能优于MFTP(Multicast File Transport Protocol),同时具有较好的网络可扩展性。  相似文献   

9.
基于用户公平的随机早期检测算法改进   总被引:3,自引:1,他引:2  
边界路由器通常为多个接入用户提供访问Internet的共享上行链路,当所有用户的接入带宽大于上行链路带宽时,可能产生拥塞。在这种典型接入方式下,存在基于用户的公平性问题:一旦边界路由器发生拥塞,各接入用户在共享链路上所获得的吞吐率应该与接入带宽成正比。对不同接入带宽用户的吞吐率进行了理论分析和仿真实验,结果表明,随机早期检测算法(RED)不能提供较好的用户公平性服务,针对这一问题,对RED算法的丢包概率的计算进行了改进:在计算某一个包的丢弃概率时,根据其输入接口的链路带宽进行修正。仿真结果表明,改进的算法在解决基于用户公平性方面具有良好效果。  相似文献   

10.
本文提出了一种面向多媒体的分层组播拥塞控制协议(Rate Adaptation at Receivers for Layered Multicast with Dynamic Layers),简称MRAAR-DL。该协议具有良好的TCP友善性和分层编码通用性。  相似文献   

11.
基于网络控制的分层多点播送速率控制机制研究   总被引:1,自引:0,他引:1  
本文在视频分层编码及分层传输协议的基础上,将基于网络控制与接收端控制机制相结合,提出一种新的分层多点播送速率控制机制。文中给出了该机制的拥塞检测、流行度权衡和数据层增加和丢弃算法。实验结果表明,该速率控制机制通史对拥塞做也快速响应,并在较好利用宽带的基础上保证高流行度的会话流具有较好的服务质量。  相似文献   

12.
13.
Congestion control for IP multicast on the Internet has been one of the main issues that challenge a rapid deployment of IP multicast. In this article, we survey and discuss the most important congestion control schemes for multicast video applications on the Internet. We start with a discussion of the different elements of a multicast congestion control architecture. A congestion control scheme for multicast video possesses specific requirements for these elements. These requirements are discussed, along with the evaluation criteria for the performance of multicast video. We categorize the schemes we present into end-to-end schemes and router-supported schemes. We start with the end-to-end category and discuss several examples of both single-rate multicast applications and layered multicast applications. For the router-supported category, we first present single-rate schemes that utilize filtering of multicast packets by the routers. Next we discuss receiver-based layered schemes that rely on routers group?flow control of multicast sessions. We evaluate a number of schemes that belong to each of the two categories.  相似文献   

14.
叶晓国  吴家皋  姜爱全 《电子学报》2005,33(8):1432-1437
基于Internet的多媒体多播应用的迅猛发展对多播拥塞控制提出了要求.分层多播是适应网络异构性较有效的方案.针对现有分层多播存在的问题,将主动网技术思想引入到分层多播拥塞控制中,提出了一种逐跳TCP友好的主动分层多播拥塞控制方案(HTLMA),采用主动标记分层、逐跳探测TCP友好可用带宽,以及主动速率控制机制.仿真实验表明,HTLMA方案大大改进了分层多播拥塞控制的性能,具有较快的拥塞响应速度、较好的稳定性和TCP友好特性.  相似文献   

15.
Traditional approaches to receiver-driven layered multicast have advocated the benefits of cumulative layering, which can enable coarse-grained congestion control that complies with TCP-friendliness equations over large time scales. In this paper, we quantify the costs and benefits of using noncumulative layering and present a new, scalable multicast congestion control scheme called STAIR that embodies this approach. Our first main contribution is a set of performance criteria on which we base a comparative evaluation of layered multicast schemes. In contrast to the conventional wisdom, we demonstrate that fine-grained rate adjustment can be achieved with only modest increases in the number of layers, aggregate bandwidth consumption and control traffic. The STAIR protocol that we subsequently define and evaluate is a multiple rate congestion control scheme that provides a fine-grained approximation to the behavior of TCP additive increase/multiplicative decrease (AIMD) on a per-receiver basis.  相似文献   

16.
Achieving inter-session fairness for layered video multicast   总被引:1,自引:0,他引:1  
The Internet is increasingly used to deliver multimedia services. Since there are heterogeneous receivers and changing network conditions, it has been proposed to use adaptive rate control techniques such as layered video multicast to adjust the video traffic according to the available Internet resources. A problem of layered video multicast is that it is unable to provide fair bandwidth sharing between competing video sessions. We propose two schemes, layered video multicast with congestion sensitivity and adaptive join-timer (LVMCA) and layered video multicast with priority dropping (LVMPD), to achieve inter-session fairness for layered video multicast. Receiver-driven layered multicast (RLM), layer-based congestion sensitivity, LVMCA, and LVMPD are simulated and compared. Results show both proposed schemes, especially LVMPD, are fairer and have shorter convergence time than the other two schemes.  相似文献   

17.
FLID-DL: congestion control for layered multicast   总被引:8,自引:0,他引:8  
We describe fair layered increase/decrease with dynamic layering (FLID-DL): a new multirate congestion control algorithm for layered multicast sessions. FLID-DL generalizes the receiver-driven layered congestion control protocol (RLC) introduced by Vicisano et al. (Proc. IEEE INFOCOM, San Francisco, CA, , p.996-1003, Mar. 1998)ameliorating the problems associated with large Internet group management protocol (IGMP) leave latencies and abrupt rate increases. Like RLC, FLID-DL, is a scalable, receiver-driven congestion control mechanism in which receivers add layers at sender-initiated synchronization points and leave layers when they experience congestion. FLID-DL congestion control coexists with transmission control protocol (TCP) flows as well as other FLID-DL sessions and supports general rates on the different multicast layers. We demonstrate via simulations that our congestion control scheme exhibits better fairness properties and provides better throughput than previous methods. A key contribution that enables FLID-DL and may be useful elsewhere is dynamic layering (DL), which mitigates the negative impact of long IGMP leave latencies and eliminates the need for probe intervals present in RLC. We use DL to respond to congestion much faster than IGMP leave operations, which have proven to be a bottleneck in practice for prior work.  相似文献   

18.
本文提出了一种新的多速率多播拥塞控制策略,以满足分层多播接收者的可用带宽异构性。这种接收方驱动的拥塞控制策略,能够根据网络情况变化动态地调整分层的数量及层速率,运用最优层速率分配算法来满足接收者的可用带宽异构性,接收者的可用带宽可以用根据TCP友好经验公式计算出。仿真实验表明,该算法在TCP友好性上有良好的性能,同时它可以明显提高系统的吞吐量。  相似文献   

19.
《IEEE network》2002,16(5):38-46
Today, the dominant paradigm for congestion control in the Internet is based on the notion of TCP friendliness. To be TCP-friendly, a source must behave in such a way as to achieve a bandwidth that is similar to the bandwidth obtained by a TCP flow that would observe the same round-trip time (RTT) and the same loss rate. However, with the success of the Internet comes the deployment of an increasing number of applications that do not use TCP as a transport protocol. These applications can often improve their own performance by not being TCP-friendly, which severely penalizes TCP flows. To design new applications to be TCP-friendly is often a difficult task. The idea of the fair queuing (FQ) paradigm as a means to improve congestion control was first introduced by Keshav (1991). While Keshav made a fundamental step toward a new paradigm for the design of congestion control protocols, he did not formalize his results so that his findings could be extended for the design of new congestion control protocols. We make this step and formally define the FQ paradigm as a paradigm for the design of new end-to-end congestion control protocols. This paradigm relies on FQ scheduling with per-flow scheduling and longest queue drop buffer management in each router. We assume only selfish and noncollaborative end users. Our main contribution is the formal statement of the congestion control problem as a whole, which enables us to demonstrate the validity of the FQ paradigm. We also demonstrate that the FQ paradigm does not adversely impact the throughput of TCP flows and explain how to apply the FQ paradigm for the design of new congestion control protocols. As a pragmatic validation of the FQ paradigm, we discuss a new multicast congestion control protocol called packet pair receiver-driven layered multicast (PLM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号