首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 531 毫秒
1.
为了使计算系统具有低功耗和容错能力,基于可逆逻辑设计了一种容错的通用移位寄存器。提出了一种新型的容错可逆逻辑门(Parity-Preserving D Flip_flop Gate, PP_DFG),利用它和存在的容错门,完成了寄存器和多路数据选择器的设计。综合上述模块,构建了容错可逆的通用移位寄存器电路,用Verilog 硬件描述语言建模,仿真显示电路逻辑结构正确。同现有电路相比,根据量子代价、延迟和无用输出对其进行性能评估,结果表明该电路不仅具有容错功能,而且性能提高了16%~50%。设计的电路可作为一种重要的存储元件应用于未来的低功耗计算系统。  相似文献   

2.
逻辑关系可用逻辑函数表示,量子逻辑关系是可逆的,引入和定义了量子逻辑函数;通过引入辅助量子位,增添量子输出信号的区分位,完成对非可逆逻辑门的改造,使非可逆逻辑门在量子电路中得到可逆实现,并研究了一些有用的非可逆逻辑门的改造方法,给出可实现的优化后的量子电路。  相似文献   

3.
基于遗传算法的量子可逆逻辑电路综合方法研究   总被引:1,自引:1,他引:0  
量子可逆逻辑电路综合主要是研究在给定的量子门和量子电路的约束条件及限制下,找到最小或较小的量子代价实现所需量子逻辑功能的电路。把量子逻辑门的功能用矩阵的数学模型表示,用遗传算法作全局搜索工具,将遗传算法应用于量子可逆逻辑电路综合,是一种全新的可逆逻辑电路综合方法,实现了合成、优化同步进行。四阶量子电路实验已取得了很好的效果,并进一步分析了此方法在高阶量子电路综合问题上的应用前景。  相似文献   

4.
综合法研究量子可逆逻辑电路   总被引:3,自引:3,他引:0  
摘 要:量子可逆逻辑电路优化与综合主要是研究在给定的量子门和量子电路的约束条件下,找到最小或较小的量子代价电路以实现所需电路逻辑功能。量子逻辑真值表综合法是量子电路可逆逻辑综合中最有效的方法之一,它包括正向综合、逆向综合和双向综合。本文推广和定义了横向汉明距离、纵向汉明距离和交叉汉明距离,使用广义汉明距离提出了一种量子电路优化与综合的新方法。研究表明,此方法使量子逻辑电路得到了更好的优化。  相似文献   

5.
可逆电路技术在低功耗芯片和量子通信中广泛使用。目前,大部分学者着重研究可逆电路的合成,对电路的故障测试却很少问津,但是可逆电路的测试在应用中却十分重要。文中构造了一种四输入通用Toffoli门(universal toffoli gate,UTG)用来检测电路故障,这个门可以实现所有基本的布尔逻辑。UTG门可以检测到所...  相似文献   

6.
针对量子逻辑电路规模逐渐增大,电路可靠性逐渐下降的问题,提出基于单个量子逻辑门在线故障检测定位方法,该方法使用新构造的检测信号生成门与故障检测门,利用奇偶保持特性判断待测量子逻辑门是否发生故障,同时在设计过程中对信号检测电路进行检验,保证检测电路的正确性。此外提出了基于硬件冗余的量子逻辑电路自修复设计方法。实验结果表明,文中故障检测方法在量子门和垃圾位等性能指标上相对已有方法均有了改进,首次实现的量子逻辑电路的自修复设计大大提高了电路的容错能力和可靠性。  相似文献   

7.
利用函数变换法,以Toffoli门族为基础,设计了一种可逆二-十进制优先编码器。提出了一种新的函数置换法综合算法,并引入4×4 Toffoli门对电路进行优化。利用Quartus II软件对电路进行设计与仿真,并搭建了FPGA测试平台进行验证。验证结果表明,电路逻辑功能正确,优化后各项性能指标有所提高,与优化前相比,量子门总数减少约31%,垃圾输出减少约32%,量子代价减少约2%,常量输入减少约36%,为减小芯片面积奠定了基础。  相似文献   

8.
基于汉明纠错编码的AES硬件容错设计与实现   总被引:3,自引:0,他引:3       下载免费PDF全文
唐明  张国平  张焕国 《电子学报》2005,33(11):2013-2016
提出一种AES硬件容错设计可避免攻击者利用在AES设计环节中插入故障位实现攻击.在原有AES硬件设计中加入汉明码纠错电路,能自动纠正同一字节内的所有单比特故障,硬件仿真实验证明,故障发现率接近100%.针对不同AES设计结构和测试点配置对纠错电路的资源及速度进行了分析,实验结果表明我们提出的硬件容错设计有很强的可行性.  相似文献   

9.
针对可逆电路到量子电路的有效映射问题,提出了带禁忌表的大变异自适应遗传算法,用于量子可逆电路的综合.选取量子非门、控制非门、控制V门与控制V+门(NCV)构成量子门库,建立了量子电路计算模型.采用二进制串行编码方案,设计了适应度函数、进化算子及优化规则,实现了带禁忌表大变异自适应遗传算法的量子可逆电路综合,并用Revlib电路库进行了测试.结果表明该综合方法能同时得到多个功能解,且所生成电路的量子代价优于库中电路,验证了提出算法用于量子可逆电路综合的正确性和有效性.  相似文献   

10.
许多量子电路综合算法由于指数级时间与空间复杂度,只能用可逆逻辑门综合3量子逻辑电路,仅有少数算法实现用量子非门,控制非门,控制V门与控制V+门(NCV)综合3量子逻辑电路,主要方法是将电路综合问题简化为四值逻辑综合问题.本文提出用NCV门构造新型量子逻辑门库,该库与NCV门库在综合最优3量子逻辑电路上等价,因此又可将四值逻辑综合问题进一步简化为更易求解的二值逻辑综合问题,使用基于完备Hash函数的3量子电路快速综合算法,快速生成全部最优的3量子逻辑电路,以最小代价综合电路的平均速度是目前最好结果Maslov 2007的近127倍.  相似文献   

11.
Reversible logic circuits have received emerging attentions in recent years. Reversible logic is widely applied in some new technical fields, such as quantum computing, nanocomputing and optical computing and so on. In this paper, three fault tolerant gates are proposed, ZPL gate, ZQC gate and ZC gate. By using the proposed gates, fault tolerant quantum and reversible BCD adder and skip carry BCD adder are designed, which overcome the limitations of the existing methods. The proposed reversible BCD adders have also parity-preserving property. They are better than the existing counterparts, especially in the quantum cost. Proposed designs have been compared with existing designs with respect to the number of gates, number of garbage outputs and quantum cost.  相似文献   

12.
ABSTRACT

Energy dissipation caused by information loss in irreversible computations will be an important limitation for the development of nano-scale circuits in the near future. Reductions in energy dissipation comprise one of the important goals of nanotechnology-based methods, including Quantum dot Cellular Automata (QCA), and so it is desirable to consider reversibility in the design of QCA circuits. In this research, a novel reversible Fredkin gate based on QCA is proposed, which is more efficient and less complex than the conventional Fredkin gate. Conservative reversible logic is parity preserving; hence, any permanent or transient fault can be caused a mismatch between the inputs and the outputs and can be concurrently detected if a reversible circuit is implemented with the conservative Fredkin gate. A single missing/additional cell defect is investigated in the proposed Fredkin gate and fault patterns are presented. To demonstrate the efficiency of the proposed design, some testable reversible sequential elements, such as D-latch, JK-latch, T-latch and SR-latch, are designed by using it. Our proposed concurrent testable designs greatly reduce the occupied area and maximise the circuit density in comparison with previously reported designs. The proposed designs are simulated and verified using QCA Designer ver.2.0.3 and HDLQ.  相似文献   

13.
Reversible logic has gained interest of researchers worldwide for its ultra-low power and high speed computing abilities in the future quantum information processing. Testing of these circuits is important for ensuring high reliability of their operation. In this work, we propose an ATPG algorithm for reversible circuits using an exact approach to generate CTS (Complete Test Set) which can detect single stuck-at faults, multiple stuck-at faults, repeated gate fault, partial and complete missing gate faults which are very useful logical fault models for reversible logic to model any physical defect. Proposed algorithm can be used to test a reversible circuit designed with k-CNOT, Peres and Fredkin gates. Through extensive experiments, we have validated our proposed algorithm for several benchmark circuits and other circuits with family of reversible gates. This algorithm produces a minimal and complete test set while reducing test generation time as compared to existing state-of-the-art algorithms. A testing tool is developed satisfying the purpose of generating all possible CTS’s indicating the simulation time, number of levels and gates in the circuit. This paper also contributes to the detection and removal of redundant faults for optimal test set generation.  相似文献   

14.

Complementary metal-oxide semiconductor (CMOS) technology may face so much problems in future due to the smaller size of transistors and increase in circuits’ volume and chips temperature. A new technology that can be a good alternative to CMOS circuits is quantum-dot cellular automata (QCA). These technologies have features such as a very low power consumption, high speed and small dimensions. In nano-communication system, error detection and correction in a receiver message are major factors. In addition, circuit reversibility in QCA helps designs a lot. In this research, generator and checker circuit of the reversible parity and eventually their nano-communication system are designed reversible using odd parity bit. The proposed circuits and the theoretical values are tested by QCADesigner 2.0.3 simulator to show the correct operation of the circuits. According to the simulation results, the proposed circuits compared with the previous structure improve delay by 90–75–35% in generator and checker structures of parity and their reversibility of nano-communication system, respectively. The proposed circuits are used in nano-transmitters and nano-receivers.

  相似文献   

15.
The quantum of power consumption in wireless sensor nodes plays a vital role in power management since more number of functional elements are integrated in a smaller space and operated at very high frequencies. In addition, the variations in the power consumption pave the way for power analysis attacks in which the attacker gains control of the secret parameters involved in the cryptographic implementation embedded in the wireless sensor nodes. Hence, a strong countermeasure is required to provide adequate security in these systems. Traditional digital logic gates are used to build the circuits in wireless sensor nodes and the primary reason for its power consumption is the absence of reversibility property in those gates. These irreversible logic gates consume power as heat due to the loss of per bit information. In order to minimize the power consumption and in turn to circumvent the issues related to power analysis attacks, reversible logic gates can be used in wireless sensor nodes. This shifts the focus from power-hungry irreversible gates to potentially powerful circuits based on controllable quantum systems. Reversible logic gates theoretically consume zero power and have accurate quantum circuit model for practical realization such as quantum computers and implementations based on quantum dot cellular automata. One of the key components in wireless sensor nodes is the cryptographic algorithm implementation which is used to secure the information collected by the sensor nodes. In this work, a novel reversible gate design of 128-bit Advanced Encryption Standard (AES) cryptographic algorithm is presented. The complete structure of AES algorithm is designed by using combinational logic circuits and further they are mapped to reversible logic circuits. The proposed architectures make use of Toffoli family of reversible gates. The performance metrics such as gate count and quantum cost of the proposed designs are rigorously analyzed with respect to the existing designs and are properly tabulated. Our proposed reversible design of AES algorithm shows considerable improvements in the performance metrics when compared to existing designs.  相似文献   

16.
《Microelectronics Journal》2014,45(2):239-248
Design of parity preserving logic based on emerging nanotechnology is very limited due to present technological limitation in tackling its high error rate. In this work, Quantum-dot cellular automata (QCA), a potential alternative to CMOS, is investigated for designing easily testable logic circuit. A novel self-testable logic structure referred to as the testable-QCA (t-QCA), using parity preserving logic, is proposed. Design flexibility of t-QCA then evaluated through synthesis of standard functions. The programmability feature of t-QCA is utilized to implement an ALU, realizing six important functions. Although the parity preservation property of t-QCA enables concurrent detection of permanent as well as the transient faults, an augmented test logic circuit (TC) using QCA primitives has been introduced to cover the cell defects in nanotechnology. Experimental results establish the efficiency of the proposed design that outperforms the existing technologies in terms of design cost and test overhead. The achievement of 100% stuck-at fault coverage and the 100% fault coverage for single missing/additional cell defects in QCA layout of the t-QCA gate, address the reliability issues of QCA nano-circuit design.  相似文献   

17.
量子元胞自动机(QCA)是一种纳米范围内不含晶体管的计算范例。基于QCA提出了QCA奇偶校验系统电路的分块设计方法。首先设计了异或门、奇偶判断单元,再运用分块设计思想构建了奇数产生电路和奇偶校验电路的结构,所设计的电路拥有尺寸极小和功耗极低等优点,QCADesigner软件仿真结果验证了设计的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号