首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
为改善路用混凝土抗盐冻性能,选取4种纳米材料SiO_2、TiO_2、Al_2O_3和Fe_2O_3,采用单掺方式(掺量均为水泥质量的1%),制备20组试件,配制浓度为3%的NaCl溶液,分别进行弯拉强度试验和冻融循环试验,测得混凝土的弯拉强度及不同冻融循环次数下混凝土的弯拉强度损失、质量损失和相对动弹模量。研究结果表明:(1)4种纳米材料均可有效提高路用混凝土的弯拉强度,改善混凝土的抗盐冻性能;(2)SiO_2增强混凝土弯拉强度效果最好,TiO_2改善混凝土抗盐冻效果最佳。  相似文献   

2.
为了系统研究纤维高性能混凝土的力学性能、抗冻性能、疲劳特性,将不同掺量的聚丙烯纤维、钢纤维、聚乙烯醇纤维掺入到掺加粉煤灰的C50高性能混凝土中,基于坍落度试验、抗压强度试验、抗除冰盐冻循环试验、冻融循环试验、弯曲疲劳试验,分析了纤维品种和掺量对高性能混凝土的力学性能、抗冻性和疲劳耐久性的影响,利用扫描电子显微镜从微观结构角度分析了力学性能试验的结论。结果表明,聚丙烯纤维、钢纤维和聚乙烯醇纤维掺量越高,高性能混凝土的工作性越差;掺加纤维能够改善高性能混凝土的抗压强度和弯拉强度,显著提高高性能混凝土的抗盐冻侵蚀性能、抗冻性能和抗疲劳耐久性能。聚丙烯纤维、钢纤维、聚乙烯醇纤维对高性能混凝土力学强度、抗冻性能和疲劳性能的影响存在界面增强效应、加筋阻裂效应的双重作用,从而有效延缓微裂纹的扩展和阻滞宏观裂缝的发生。适宜的聚丙烯纤维、钢纤维、聚乙烯醇纤维掺量应控制在0. 6~0. 9、1. 2~1. 5、0. 9~1. 2 kg/m3,建议工程实践中优先选择掺加聚乙烯醇纤维,研究成果为甄选纤维和确定经济合理的纤维掺量具有重要意义。  相似文献   

3.
对普通混凝土、钢纤维混凝土、聚丙烯纤维混凝土和网状聚丙烯纤维混凝土进行强度性能和疲劳性能的室内对比试验,结果表明:钢纤维和Fibermesh网状聚丙烯纤维对混凝土抗弯拉强度改善明显;掺入三种纤维后提高了混凝土的柔韧性,尤其是网状聚丙烯纤维和单丝纤维,改善效果很明显,这对改善UTW路面应力状况非常有利;网状聚丙烯纤维混凝土在0.65~0.90应力水平范围内,疲劳寿命增长均很明显,而且相对比较稳定,说明网状聚丙烯纤维的增韧作用更加明显,适宜于UTW路面使用。  相似文献   

4.
根据砼强度及施工要求确定路用水泥砼配合比,选择合适的材料及掺量,在盐冻环境(NaCl盐溶液浓度为3%)下开展冻融循环及弯拉强度室内试验,测定不同类型砼经过不同次数冻融循环后的相对动弹性模量、质量损失及弯拉强度,评价水灰比、引气剂、粉煤灰、钢纤维对路用砼抗盐冻性能的影响。  相似文献   

5.
为提高水泥混凝土的抗弯拉性能同时减少混凝土早期裂缝,通常在混凝土中加入纤维,但是不同类型、不同几何尺度的纤维对混凝土的性能影响不同。该文选用钢纤维、聚丙烯纤维,每种纤维分别选用2种不同的尺寸,来研究水泥混凝土中掺入多尺度纤维对抗弯拉强度和抗裂性能的影响。  相似文献   

6.
通过试验研究了单掺聚丙烯纤维、钢纤维和复合钢纤维与聚丙烯纤维对C50防水混凝土力学、防渗及抗裂性能的影响。结果表明:纤维的掺入对混凝土的抗压强度影响不大,可明显提高其劈拉强度和抗裂性能,但会降低其抗水渗透和抗氯离子渗透性能,适量的聚丙烯纤维与钢纤维复掺可改善其防渗性能;复合钢纤维-聚丙烯纤维混凝土的性能优于单掺两种纤维的混凝土;1.05%体积掺量的钢纤维和0.15%体积掺量的聚丙烯纤维复合时,混凝土性能最佳。  相似文献   

7.
公路工程领域一直致力于解决裂缝等沥青路面常见病害,本研究结合玄武岩纤维弹性模量大、强度高、耐腐蚀、无污染等技术性能,开展玄武岩纤维丝加筋路面抗横向裂缝研究。本研究通过原材料性能试验,配合比设计、抗拉强度试验、弯拉强度试验、疲劳试验等试验评价玄武岩纤维丝加筋路面抗裂性能。试验结果得出选用C型玄武岩纤维丝沥青混合料抗拉强度增加60. 8%,弯拉强度增加41. 5%,疲劳强度增加33%。  相似文献   

8.
王航  魏晓刚  罗要飞 《公路》2023,(2):11-18
基于水泥乳化沥青混合料强度和疲劳性能与其结构层受力特性不相适应的问题,提出采用纤维稳定剂改善水泥乳化沥青混合料的柔韧性;通过低温弯曲试验和弯曲疲劳试验评价玄武岩纤维对水泥乳化沥青混合料柔韧性能的影响及影响显著性,对比掺有玄武岩纤维、聚酯纤维、聚丙烯纤维的水泥乳化沥青混合料力学强度与路用性能差异;并采用Bisar3.0软件分析了铺有水泥乳化沥青混合料、纤维水泥乳化沥青混合料的路面结构力学响应。结果表明:玄武岩纤维有效改善了AC-25型水泥乳化沥青混合料的柔韧性,基于性价比较优的考虑,推荐玄武岩纤维掺量为0.2%~0.3%、纤维长度为9 mm;玄武岩纤维对水泥乳化沥青混合料柔韧性、劈裂强度的改善效果劣于聚酯纤维,但掺有玄武岩纤维的混合料具有更高的抗压强度、抗压回弹模量、抗车辙性能和抗松散性能,整体性能更好;该混合料铺筑在高等级沥青路面下面层中,可有效降低沥青混合料层的拉应变和剪应力值,分别降低约16.0%和4.8%,路面发生疲劳开裂和车辙病害的概率减小。研究成果可为水泥乳化沥青混合料在路面结构中应用及病害控制提供参考依据。  相似文献   

9.
基于7 d无侧限抗压强度、劈裂强度、弯拉强度研究了聚乙烯醇(PVA)纤维掺量及长度对水泥稳定碎石力学性能的影响,优化出适宜的纤维掺量和长度;进而通过干缩试验、温缩试验、疲劳试验、冻融循环试验,研究了PVA纤维水泥稳定级配碎石混合料的变形特性和疲劳性能,基于SEM试验揭示了PVA纤维的增强机理。结果表明,掺加PVA纤维显著改善了水泥稳定碎石混合料的抗压强度和弯拉强度,PVA纤维提高了水泥稳定级配碎石的抗疲劳耐久性和抗冻融性能,并能减少干缩变形和温缩变形。在PVA纤维掺量1.1 kg/m~3、纤维长度20 mm时,水泥稳定级配碎石的各项力学性能、变形特性和疲劳性能达到峰值。锚固在水泥稳定级配碎石中的PVA纤维具有协同受力、传递荷载、协调变形的作用,从而有效延缓了破坏裂纹的产生和发展。实体工程跟踪检测结果表明,掺加PVA纤维可以提高水泥稳定碎石基层的抗压强度,阻止半刚性基层产生反射裂缝,并延缓半刚性基层产生疲劳开裂,PVA纤维水泥稳定碎石基层具有推广应用价值。  相似文献   

10.
不同纤维沥青混合料路用特性的室内试验研究   总被引:4,自引:0,他引:4  
杨锡武 《公路》2007,(9):188-194
研究了钢纤维、德兰尼特纤维和木质素纤维沥青混合料的马歇尔指标性能、抗拉强度、动稳定度、抗剪强度和疲劳寿命。结果表明,在沥青混合料中加入纤维可以显著提高沥青混合料的抗拉强度而使其刚度降低,从而具有良好的抗裂性能,钢纤维和德兰尼特沥青混合料具有较好的热稳定性及抗剪强度,钢纤维沥青混合料具有较高的疲劳寿命。因此,可以通过在沥青混合料中加入纤维来提高沥青混凝土路面性能和使用寿命,避免沥青混凝土路面在重载交通作用下的提前破坏和低温条件下沥青混凝土路面的收缩开裂,延长路面使用寿命。  相似文献   

11.
《公路》2017,(4)
为深入研究冻融循环作用对水泥稳定碎石材料疲劳性能的影响,通过弯拉强度及疲劳试验,探讨了不同冻融循环次数和不同应力比,对水泥稳定碎石材料强度及疲劳性能的影响。研究结果表明随着冻融循环次数的增加,材料内部损伤度也不断增加,并且前期下降速度快,后期下降速度平缓,当冻融循环次数达到20次时,水泥稳定碎石材料损伤度达到15.7%;随着冻融循环次数的增加,水泥稳定碎石材料的弯拉强度也随之降低,并且前期下降速度快,后期下降速度平缓,冻融循环次数达到20次时,弯拉强度降低到0.78 MPa,相比未冻融水泥稳定碎石材料,下降约为52%;水泥稳定碎石材料剩余疲劳寿命百分率随着损伤度增加而减小,并且表现为前期下降速度快,后期下降速度趋于平稳的特点,损伤度大于12%后,剩余疲劳寿命百分率下降较为缓慢。  相似文献   

12.
《公路》2004,(5):150-152
通过对普通混凝土、网状聚丙烯纤维混凝土和钢纤维混凝土进行室内强度性能、疲劳性能和耐磨性能对比试验研究,表明网状聚丙烯纤维对混凝土抗弯拉强度性能改善效果明显,具有良好的增韧性。  相似文献   

13.
《公路》2017,(6)
水泥路面所用水泥混凝土有较大的抗压强度,但是在使用过程中受弯拉作用常出现破坏,虽在水泥混凝土中添加纤维能提高其弯曲韧性,但效果不显著,故选用玄武岩纤维格栅通过环氧树脂预处理后铺入水泥混凝土中,研究玄武岩纤维格栅两种不同网格尺寸、在两种不同配合比的混凝土中铺筑不同的层数时的弯拉强度,并分析受力过程及韧性指数、剩余强度。  相似文献   

14.
通过聚丙烯纤维混凝土与冻害混凝土的黏结性能试验研究,主要考察了聚丙烯纤维掺量、界面剂类型及冻融循环作用等对聚丙烯纤维与冻害混凝土黏结性能的影响.试验结果表明,冻融循环作用对新混凝土与损伤混凝土黏结性能的损伤程度较大;聚丙烯纤维的加入明显提高了新混凝土与损伤混凝土的黏结劈拉强度及黏结面的抗冻融循环作用的能力;同时,界面剂类型对新混凝土与损伤混凝土的黏结强度有一定的影响,采用混凝土界面剂的试件的黏结劈拉强度及黏结面的抗冻融作用的能力高于采用水泥净浆的试件.  相似文献   

15.
通过对3种类型(铣削型、波纹型、端钩型)钢纤维再生粗骨料混凝土的力学性能试验,探讨体积分数分别为0、0.5%、1%、1.5%对再生粗骨料水泥混凝土的抗压强度、劈拉强度、抗折强度及抗冲击性能的影响。试验结果表明:钢纤维掺入使再生粗骨料水泥混凝土的力学性能明显增强,端钩型钢纤维对再生粗骨料混凝土的性能影响最大;钢纤维掺量对劈拉强度和抗折强度影响显著,对抗压强度影响较小,同时能提高抗冲击性能,当钢纤维掺量为1%时,再生粗骨料混凝土的初裂冲击次数能提高将近300%。该研究对同类再生粗骨料混凝土中添加钢纤维后的力学性能研究具有一定参考和借鉴意义。  相似文献   

16.
为了掌握高锆耐碱玻璃纤维对混凝土疲劳性能的改善效果,研究了不同应力水平、不同体积掺率的高锆耐碱玻璃纤维混凝土的弯曲疲劳特性。对比了高锆耐碱玻璃纤维与钢纤维、粗聚丙烯纤维增强混凝土弯曲疲劳寿命的差异。试验结果表明:在低应力水平为0.63时,体积掺率分别为0.25%、0.45%和0.75%的高锆耐碱玻璃纤维混凝土GF25、GF45和GF75的疲劳寿命比素混凝土分别提高了68%、171%和243%;中等应力水平0.67时,GF25、GF45和GF75的疲劳寿命比素混凝土分别提高了59%、154%和209%;较高应力水平为0.70时,GF25、GF45和GF75的疲劳寿命比素混凝土分别提高了53%、76%和115%。当中等应力水平为0.67时,GF75的疲劳寿命比同体积掺率为0.75%的粗聚丙烯纤维混凝土PPF75提高了130%,GF45的疲劳寿命比同体积掺率为0.45%的钢纤维混凝土SF45提高了104%。可见掺加了高锆耐碱玻璃纤维显著改善了混凝土的疲劳性能;在中等应力水平、同体积掺率下,高锆耐碱玻璃纤维对混凝土弯曲疲劳性能的改善效果优于钢纤维与粗聚丙烯纤维。  相似文献   

17.
为准确评价盐-湿-热循环作用对沿海含盐高湿区沥青混合料路用性能和疲劳性能的损伤规律,针对沿海高温多雨地区沥青路面在荷载、高温、海盐水冻融循环作用下剩余弯拉强度和疲劳寿命进行研究,制定了适宜的盐-湿-热循环试验方案,分析给出了盐-湿-热循环作用下沥青混合料路用性能、疲劳性能的损失率计算模型。进而对比分析了硅藻土、岩沥青、木质素纤维、聚酯纤维、玄武岩纤维、抗剥落剂ARM、消石灰对含盐高湿环境沥青混凝土路用性能和疲劳性能的改善效果。试验结果表明:在盐-湿-热循环过程中沥青混合料的车辙试验动稳定度、弯曲应变、弯拉强度、疲劳寿命能衰变规律符合logistics生长曲线模型。沥青混合料各项路用性能、力学性能、抗疲劳性能劣化程度随着盐溶液浓度增大而增大,当盐溶液溶度超过10%后,继续增大盐溶液浓度沥青混合料性能劣化速率减小;前20次盐-湿-热循环作用下沥青混合料路用性能衰变劣化程度较为明显,继续增大盐-湿-热循环次数后沥青混合料高低温和水稳定性能劣化速率减小,可采用10%盐溶液浓度和盐-湿-热循环20次来模拟盐-湿-热侵蚀环境对沥青路面的负面影响;纤维类添加剂对含盐高湿环境沥青混合料抗疲劳性能、低温性能及高温性能改善效果最优,硅藻土对沥青混合料水稳定性改善效果最好,抗剥落剂和消石灰对沥青混合料在盐-湿-热循环作用后路用性能改善效果最差,建议在沿海含盐高湿地区优先采用玄武岩纤维来提高沥青混合料的水稳定性和抗疲劳耐久性能。  相似文献   

18.
多孔混凝土疲劳性能的研究   总被引:24,自引:1,他引:24  
多孔混凝土作为路面的基层,和面层一起受到车辆荷载和温度的反复作用,结构设计中需考虑其疲劳性能。通过室内小梁弯拉疲劳试验,分析疲劳寿命试验数据的概率分布,得出多孔混凝土疲劳寿命服从双参数威布尔分布,以此建立了不同应力水平和等效应力水平下两种形式的疲劳方程;分析了疲劳寿命变异性的影响因素及减小变异性的相应措施,比较得出其疲劳性能优于半刚性基层材料。利用得出的疲劳方程,建立了以多孔混凝土作为水泥混凝土路面下面层荷载应力计算的疲劳应力系数,以及作为沥青路面基层时,进行层底弯拉应力验算的弯拉强度结构系数,可用于路面结构计算。  相似文献   

19.
通过水泥混凝土试件的冻融循环试验,研究了聚丙烯纤维掺量和引气剂掺量对冻融作用后混凝土基本力学性能的影响,探讨了聚丙烯纤维和引气剂对混凝土抗冻性能的作用机理,为改善水泥混凝土路面的抗冻融耐久性能提供了资料。  相似文献   

20.
《公路》2020,(6)
随着我国技术、经济的迅猛发展,基础设施建设中不断引用"新技术、新工艺、新材料、新设备"等4新技术,不断解决施工过程中存在的问题。为避免混凝土产生有害裂缝,增加混凝土的耐久性与耐候性,特在混凝土中掺拌玄武岩纤维,以此减少裂缝的产生。文中通过试验研究了纤维掺量对混凝土试件的抗压强度和抗劈拉强度的影响。结果表明,玄武岩纤维可显著提升试件的抗压强度和抗劈拉强度。随着纤维掺量的增加,抗压强度呈现出先增加后减少的趋势,纤维掺量为0.4%时,其28d抗压强度达到96.25MPa,相比素混凝土性能提升34.37%;抗劈拉强度因玄武岩纤维的桥接作用,纤维掺量为0.4%时,性能相较基准混凝土提升29.34%。该种纤维混凝土可解决需要保证路基路面不易开裂的施工问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号