首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
钢—混组合梁桥中桥面板通过剪力钉连接。以某三跨一联钢—混组合连续箱梁直桥为例,使用ANSYS建立全桥精细化实体模型,模拟桥梁的分阶段施工,对比了预制桥面板与现浇桥面板徐变效应下剪力钉内力,并分析了预制桥面板存放时间对其的影响及其在成桥10年间的时间历程。研究表明,桥面板采用现浇施工时,剪力钉横桥向徐变内力较采用预制桥面板时有不同程度的增大,在每跨支点区域增量可达其徐变内力值的25%~30%,而跨中区域增幅较小;桥面现浇对剪力钉顺桥向徐变内力有一定的“卸载”作用,全桥剪力钉顺桥向徐变内力均减小并且在两侧支点处减幅最大,可达25%,而跨中区域剪力钉减幅不明显。若采取预制桥面板,可通过延长预制混凝土板龄期来减小成桥阶段剪力钉的徐变内力,但这种方法对早期混凝土较为有效,经综合比较认为预制存放龄期为180 d较为合理。混凝土徐变速率在成桥初期较大,而后逐渐降低,成桥前2年桥面板徐变可完成80%~90%;作为累计内力的剪力钉徐变内力,在成桥前2年可达总徐变内力的90.2%,而后由于混凝土徐变速率缓慢,剪力钉内力变化不大。  相似文献   

2.
为了解徐变对逐跨施工连续箱梁桥剪力滞效应的影响,基于能量变分法及混凝土徐变理论,建立2跨逐跨施工连续梁考虑剪力滞效应的混凝土徐变次内力计算公式,并以跨径为30m+30m的逐跨施工现浇箱梁桥为例进行计算。结果表明:对于存在施工过程体系转化的逐跨施工连续梁桥,徐变次内力增加了梁体在负弯矩区的弯矩、减小了梁体正弯矩区段的弯矩;考虑徐变效应后,截面的剪力滞效应有所减弱。算例结构中,支座负弯矩区最大剪力滞系数减小20.26%,跨中正弯矩区的剪力滞系数增加了2.1%。  相似文献   

3.
结合工程实际,应用有限元软件MIDAS/CIVIL分别建立杆系有限元模型和空间实体模型,对大悬臂、多腹板、宽箱室变截面箱梁在对称荷载作用下的剪力滞效应、偏载作用下的腹板受力不均匀效应进行分析。结果表明,截面上下翼缘剪力滞效应较为显著,按规范提供的有效翼缘宽度折减计算不能完全包络剪力滞效应的影响;同时,箱梁的偏载效应从跨中至支点方向逐渐增大。  相似文献   

4.
V型刚构组合拱桥剪力滞分析   总被引:1,自引:1,他引:1  
采用通用有限元ANSYS软件,分析衢江大桥主桥V型刚构组合拱桥的剪力滞效应,计算了控制截面的剪力滞系数,得出剪力滞系数沿桥梁纵向的分布。指出边跨主梁工作应力较大,特别是边跨主梁与V型腿相交处是强度控制截面,而且边跨主梁剪力滞后现象严重,剪力滞系数高达2 0,设计时必须予以特别的注意。本文计算结果可为同类大桥设计提供参考。  相似文献   

5.
《公路》2020,(7)
为研究不同的支承方式对三跨波形钢腹板连续梁弯桥剪力滞效应的影响,采用大型通用有限元分析软件ANSYS建立了三跨波形钢腹板连续梁弯桥的三维有限元模型,考虑了2种典型荷载工况——跨中集中荷载和全桥分布荷载下,典型截面的应力分布情况,计算出截面的剪力滞系数,并对4种不同支承方式下的剪力滞效应进行了分析。研究结果表明,三跨波形钢腹板连续梁弯桥边跨跨中截面应力最小为固定支承,中间支座截面应力最小为中间偏心铰支承,中跨跨中截面应力最小为固定支承。内侧的剪力滞系数要大于外侧,集中荷载下的剪力滞系数要大于均布荷载下的剪力滞系数,各支承方式下的剪力滞系数差异不大,集中荷载作用下剪力滞系数最小的为中间偏心铰支承,分布荷载作用下剪力滞系数最小的为中间固定墩支承。  相似文献   

6.
为了更精确地研究考虑剪切剪滞双重效应波形钢腹板组合箱梁的力学性能,首先运用有限元分析方法,在综合考虑剪力滞与剪切变形双重效应影响的基础上,通过能量变分原理导出了波形钢腹板组合箱梁的控制微分方程并给出了解析解;之后在该解析解的基础上进一步推导了单元刚度矩阵及结点荷载列阵,还根据相关方程编制了FORTRAN有限元程序;最后将室内模型试验梁对波形钢腹板简支梁和连续梁的实测结果与所提理论的计算结果、ANSYS实体单元模型的计算结果进行对比分析。结果表明:所提理论和模型试验、有限元模拟3种方法所得剪力滞系数和挠度值吻合良好,且理论计算值与模型试验实测值所得跨中剪力滞系数、挠度值更接近;简支梁在承受集中荷载作用比承受均布荷载作用同一截面处的剪力滞效应影响大,连续梁在承受集中载荷作用时,在支座附近处截面的剪力滞效应的影响比跨中要大,并在靠近弯矩零点的一部分区域内表现出负剪力滞现象;波形钢腹板简支梁、连续梁的剪力滞系数随跨宽比的增大而呈曲线减小。研究成果可将波形钢腹板考虑双重效应的复杂计算问题,方便地纳入普通杆系结构矩阵位移结构体系中,可直接得到用于结构设计的剪力、弯矩,从而避免建立复杂的ANSYS有限元模型。  相似文献   

7.
为了解波形钢腹板多室箱梁部分斜拉桥剪力滞效应对结构受力的影响,以某(58+118+188+108) m单箱四室波形钢腹板部分斜拉桥为背景,采用有限元法建立空间有限元模型,在跨中偏载和对称荷载作用下,计算主跨箱梁有索段和无索段顶底板混凝土正应力,分析各截面的剪力滞分布规律。结果表明:箱梁跨中截面混凝土顶板、底板正应力分布极不均匀,具有明显的剪力滞效应,箱梁混凝土顶板、底板剪力滞系数随距集中荷载作用点距离的增大急剧减小,截面顶板剪力滞效应均比底板大;箱梁顶底板均呈现正剪力滞效应,混凝土横隔板可以改善箱梁截面正应力分布,减弱剪力滞效应;顶底板剪力滞系数在无索段范围内急剧减小,有索段内急剧增大,车辆活载只在局部范围内引起较大的剪力滞效应,设计中应考虑此效应引起的不均匀应力。  相似文献   

8.
长沙市三汊矶湘江大桥大跨径顶推梁设计与研究   总被引:1,自引:0,他引:1  
长沙市三汊矶湘江大桥边孔采用65 m跨径的顶推箱梁,箱梁中心处梁高仅3.53 m,高跨比为1/18.4。在设计过程中,对国内外已建成的顶推梁桥作了大量的调研,发现许多箱梁腹板出现了主拉应力裂缝。在设计中采用空间有限元法对腹板主拉应力、施工阶段剪力滞进行分析,发现箱梁截面在中跨支点处顶板截面存在比较大的剪力滞效应,最大剪力滞系数为tλ=1.61。根据计算结果对箱梁构造以及纵向预应力束布置进行了优化,箱梁腹板厚度在纵向上采用变厚度措施,腹板最大主拉应力降低了27%,效果明显。  相似文献   

9.
本按线性徐变理论采用Trost的龄期系数法,对M梁由于徐变和收缩引起的效应进行了分析,得出组合构件的预制部分和现浇部分施工龄期相差不能太大。现浇桥面板与预制梁龄期差较大时,收缩和徐变对预制构件的受力影响较大,应详细分析。  相似文献   

10.
刘昀 《中外公路》2021,41(5):116-119
预应力混凝土箱梁裂缝是影响桥梁结构安全的重大隐患.该文对某三孔预应力混凝土变截面箱梁建立有限元模型,分析竖向预应力损失和箱梁腹板厚度对箱梁桥开裂的影响.结果 表明:连续箱梁边墩支点附近的边跨现浇梁段的主拉应力值较大,且这些位置截面梁高较小,如果施工和运营阶段竖向预应力损失过大,在这些区域容易出现腹板斜裂缝;腹板厚度对斜截面抗剪承载力的影响比截面主拉应力的影响大;箱梁支点附近梁段腹板厚度较薄,容易导致斜截面抗剪承载能力不足.  相似文献   

11.
连续梁桥利用支点处产生负弯矩来降低跨中的正弯矩,有效地分散了各截面的受力,由此增大了桥梁跨度.鱼腹式连续箱梁桥的边腹板呈流线形状,增加了界面抗弯、抗扭刚度的同时兼具了外形的美观性.现浇连续箱型梁桥的发展使得桥梁能够适应多种截面形式和道路线形设计,但同时增加了结构的复杂性.因此鱼腹式连续梁桥的计算需要经过精密的计算和调整以保证其安全可靠[1-3].通过一个鱼腹式连续箱梁桥实例,应用平面及空间有限元模型,对桥梁结构进行计算及调整优化,确保桥梁纵、横向以及桥面板等构件满足受力和抗裂等要求[41,为类似桥型设计提供参考.  相似文献   

12.
为了解连续钢板组合梁力学性能特点,并改善其负弯矩区易开裂的状况,以长沙至益阳段高速公路扩容工程4×30m连续钢板组合梁桥为背景,采用ANSYS软件建立组合梁有限元模型,分析组合梁结构施工过程及成桥阶段的应力分布,研究支点负弯矩区桥面板裂缝控制措施。结果表明,施工阶段简支状态下,连续钢板组合梁混凝土桥面板基本处于受压状态,钢梁跨中最大Von Mises应力约为70.5MPa,翼缘焊钉顺桥向剪力从跨中向两侧支点逐渐增加,最大值12kN;汽车活载作用下,墩顶处混凝土桥面板顺桥向最大拉应力为2.9MPa,钢梁最大Von Mises应力约为64.6 MPa,焊钉顺桥向剪力峰值约为22kN。采用调整施工顺序、墩顶区现浇微膨胀纤维混凝土、加强负弯矩区纵筋配置等措施有效调整了结构应力分布,减小负弯矩区的裂缝宽度。  相似文献   

13.
为客观准确地对单箱多室波形钢腹板PC组合箱梁的剪力滞效应进行评价,结合单箱多室混凝土箱梁的计算特点,定义了波形钢腹板箱梁的剪滞翘曲位移函数,通过能量变分法建立了单箱双室和单箱三室波形钢腹板箱梁考虑剪力滞效应的基本微分方程。分别采用有限元方法和解析方法分析计算了范例的剪力滞效应,研究了跨中集中荷载和满跨均布载荷作用下截面的剪力滞分布规律,探讨了跨宽比对剪力滞效应的影响。研究表明,该解析解与有限元数值解吻合较好,但在箱梁顶底板与波形钢腹板接合处、外伸悬臂板边缘处有一些差异,需要进行修正。研究给出了相关的剪力滞系数,可以为波形钢腹板箱梁设计时的剪力滞系数取值提供参考。  相似文献   

14.
为掌握荷载横向作用位置对单箱三室波形钢腹板PC组合箱梁受力性能的影响,设计制作了缩尺比例为1∶10的模型梁,对简支模型梁分别进行了横向对称的双点和四点集中力弹性加载试验,集中力在横向分布作用在边、中腹板处顶板,对顶、底板的纵向应变、钢腹板剪应变和梁底挠度进行了测试。同时,建立有限元模型进行对比分析,并提出用腹板剪力系数表示"腹板剪力分配的不均匀程度"。结果表明:对于单箱三室的波形钢腹板混凝土组合箱梁,对称荷载的横向作用位置对作用截面的剪力滞系数横向分布有显著影响,不同腹板处顶、底板剪力滞系数的差异较大,在荷载作用点附近达最大值;加载截面横隔板的设置可以减弱剪力滞效应,而非加载截面的横隔板使顶、底板正应力分布呈现类似"负剪力滞效应";剪力在各钢腹板间不是平均分配,直接承受集中荷载的腹板可分担70%以上的剪力,其剪力系数最大可达2.0;横隔板可减小剪力不均匀分配的影响。  相似文献   

15.
为研究混凝土收缩、徐变对结合梁斜拉桥的影响机理及时效特性,以樟树赣江二桥(主跨400m的双塔双索面半飘浮体系结合梁斜拉桥)为背景进行分析。采用桥梁专业软件RM2006建立全桥有限元模型,对桥梁的时效影响机理、运营期不同构件的时效影响因素及不同结构体系的时效响应进行研究。研究结果表明,对于结合梁斜拉桥,桥面板收缩、徐变产生的主梁截面初始轴向应变是主梁中跨跨中下挠、边跨斜拉索松弛的主要原因,产生的主梁截面初始弯曲应变是主梁负弯矩出现的主要原因。桥面板收缩、恒载下桥面板徐变是引起边跨斜拉索松弛、主梁中跨跨中下挠的主要因素;桥塔收缩、徐变将引起桥塔附近斜拉索松弛,并使主梁产生局部负弯矩峰值。桥塔处竖向支座及辅助墩的设置会对结合梁斜拉桥的时变效应产生一定的不利影响,单纯从该角度来讲,全飘浮体系较其他体系更为合理。  相似文献   

16.
钢-混凝土叠合板组合梁桥的桥面板由预制板和现浇板叠合而成,预制板可以为现浇板提供浇筑模板,节省立模工序,加快施工进度。由于预制板和现浇板加载龄期存在差异,混凝土收缩徐变会引起现浇板、预制板和钢梁之间的应力重分布。本文以某市高架快速路(40+55+40m)钢-混凝土叠合板组合梁桥为工程背景,有限元分析结果表明,叠合板组合梁的桥面板收缩徐变应力约是现浇板组合梁的0.82~0.97倍,成桥后钢梁应力前者约是后者的0.80~0.94倍,叠合板对混凝土收缩徐变的“抑制”作用明显。  相似文献   

17.
波形钢腹板组合箱梁桥与钢筋混凝土箱梁桥一样,箱梁翼板也存在剪力滞效应.为研究大跨度变截面波形钢腹板组合连续箱梁的剪力滞效应,采用ANSYS的APDL参数化建模方法建立了典型的三跨式波形钢腹板组合连续箱梁桥的有限元模型,计算分析了集中(均布)荷载作用下变截面箱梁几何参数(腹板尺寸、宽高比、宽跨比、变截面)对于剪力滞系数的...  相似文献   

18.
徐华  余泽  唐盛华  方志 《中外公路》2012,32(4):93-98
随着箱形截面宽度和腹板间距的增大,其剪力滞效应越来越突出。该文结合荆岳长江公路大桥建设,建立超宽分离式混凝土边箱梁空间有限元模型,分析其成桥状态下的剪力滞效应,并与一个截面的剪力滞实测值进行了比较,结果表明:有限元模型计算结果较为准确。使用该有限元模型分析了主梁纵向不同截面的剪力滞效应,得出一些有益的结论。  相似文献   

19.
针对某地公轨合建工程35+50+35m大跨“槽型+箱型”组合截面连续混凝土梁结构体系特殊、受力行为不明确,采用ANSYS有限元软件建立三维实体模型,研究其受力行为,并对设计提出建议。研究表明:①“槽型+箱型”组合截面满足平截面假定;②组合截面槽型、箱型部分纵向不同截面、同一截面边/中腹板剪力分布存在显著差异;③槽型部分边腹板与底板衔接处应力集中明显;④槽型部分边腹板与底板衔接处应加强配筋、桥面板悬臂根部及跨中配筋可取包络设计。  相似文献   

20.
李兴民 《桥梁建设》2013,43(1):30-34
针对目前箱梁剪力滞理论和分析方法所涉及的对象仅限于支承形式简单、结构体系确定的箱梁结构,基于考虑剪力滞自由度的有限元方法,提出可以同时考虑施工动态过程、结构体系转换和混凝土收缩徐变的混凝土箱梁剪力滞效应有限元分析方法.该方法将结构及施工过程划分为与实际对应的若干时间间隔,用动态的结构有限元仿真程序自动完成桥梁施工动态过程仿真分析.以某两端固定箱梁和某两跨连续箱梁为例进行考虑施工过程和混凝土收缩徐变的箱梁剪力滞效应分析.结果表明:该方法简单、可靠;施工方法和徐变对混凝土箱梁剪力滞效应的影响明显,施工方法不同,超静定箱梁在各施工阶段的剪力滞系数明显不同,箱梁同一截面在不同施工阶段的剪力滞系数也明显不同.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号