首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 826 毫秒
1.
该文利用改进的直剪设备,进行了标准砂与木块、钢块和混凝土块的界面剪切试验,分析了剪切应力-剪切位移关系及抗剪强度指标变化规律,建立了符合剪切应力-位移关系的对数-双曲线模型,最后对剪切试验进行了数值模拟。结果显示:峰值剪切应力和峰值剪切位移呈正相关关系,混凝土-标准砂界面最大,钢-标准砂界面次之,木-标准砂界面最小;混凝土、钢、木与标准砂的界面摩擦角分别为22.50°、14.72°和11.22°,表观黏聚力集中在0~1 kPa范围内;硬化阶段采用对数模型,软化阶段采用双曲线模型,模型、试验峰值剪切位移差值的绝对值|δ_u-δ_f|均小于0.21 mm,模型、试验峰值剪切应力的比值τ_u/τ_f集中在0.96~1.03之间,模型的建立比较合理;数字模拟、试验峰值剪切应力的比值τ_s/τ_f集中在0.86~1.04之间,数值模拟拟合效果较好。  相似文献   

2.
由于加筋土结构经常受到动荷载的作用,因此筋土界面的动力剪切性能也越来越受到重视;但目前筋土界面的动力剪切试验往往循环次数很少,一般只有10多次,不能充分反映筋土界面的动力相互作用。采用大型动态直剪仪,在剪切位移幅值分别为1、2、4、6 mm时,对砾石-格栅界面进行了2 000次水平循环直剪试验,分析了剪切位移幅值对筋土界面剪切应力、竖向位移以及颗粒破碎的影响,揭示了筋土界面相互作用的机理。结果表明:在循环剪切过程中,界面平均峰值剪切应力先增加后减小;剪切位移幅值越大,达到界面峰值强度所需的循环次数越少,而达到界面残余强度所需的循环次数越多,较大的剪切位移幅值会使得砾石-格栅界面的剪切应力衰减现象更显著;随着剪切位移幅值的增大,试样最终剪缩量增大,但试样最终剪缩量增量逐渐减小;随着剪切位移幅值增大,界面剪切刚度逐渐减小,界面阻尼比却逐渐增大;通过对循环剪切试验后的砾石颗粒各粒组含量进行分析,发现剪切位移幅值越大,颗粒的相对破碎率也越大,相对颗粒破碎率与剪切位移幅值呈较好的对数关系,并与试验结果吻合较好。  相似文献   

3.
针对超高性能混凝土(UHPC)直剪性能研究较为缺乏的现状,开展24个“Z”形UHPC整体浇筑试件和24个“Z”形UHPC平接缝试件(用高压水凿毛先浇界面)的直剪试验,以得到钢纤维特性以及浇筑方式对UHPC (直剪)初裂强度、峰值强度、破坏模式以及直剪承载力的影响;并基于试验结果及UHPC细观本构模型开展了UHPC直剪承载力的理论分析研究。结果表明:无纤维UHPC整体试件和钢纤维掺量未超过3.0%的平接缝试件直剪破坏模式均为脆性破坏,纤维掺量达到2.5%的整体试件具备剪切延性破坏的特征;纤维掺量达到2.5%的平接缝试件界面处新老UHPC结合紧密;整体界面和平接缝界面直剪的初裂强度与峰值强度均随纤维掺量增加而显著增加,且峰值强度随纤维掺量几乎呈线性变化;纤维形状与长径比对整体界面初裂强度和峰值强度的影响不大,对平接缝界面则长纤维优于短纤维,异形纤维优于平直形纤维;整体界面和平接缝界面直剪的峰裂比(峰值强度与初裂强度之比)为103.5%~166.7%,整体界面峰裂比均显著大于纤维掺量相同的平接缝界面,2种界面的峰裂比均随钢纤维掺量增加而增加。建立了平接缝界面与整体界面直剪峰值强度之比η(简称直剪强度比)与纤维特征参数λf之间的高精度拟合公式。此外,还分别提出了高精度的UHPC整体界面和平接缝界面的直剪承载力计算公式。  相似文献   

4.
基于超动态应变测试技术,采集CO2相变致裂过程中的应变波信号,以CO2充装量和剪切片强度为变量,分析二者对CO2相变致裂应力波传播的影响规律。研究结果表明:CO2充装量和剪切片强度是影响应力波的两个关键因素,随着CO2充装量的增大,CO2相变致裂峰值应力逐渐增大,但增大率不断降低;随着定压剪切片强度的增大,峰值应力表现出线性增长趋势。研究成果对于提高CO2相变致裂破岩效率具有重要的理论意义和工程实用价值。  相似文献   

5.
坡积体是由坡面细流的侵蚀、搬运和沉积作用形成的一种土石混合体,含水率对其力学强度特性有重要影响。以陕西汉中略阳坡积体为研究对象,通过大型直剪试验分析坡积体重塑样在不同含水率条件下的应力应变特性、剪切"跳跃"特性、体积应变特性及抗剪强度参数变化规律。调研结果表明:略阳地区坡积体具有分布广、规模大、成因和结构构造复杂等分布特征,物质组成、结构构造和降雨是影响其工程特性的主要因素。室内大型直剪试验结果表明:含水率较低试样的应力-应变曲线可分为线弹性、局部剪切和剪切破坏3个阶段,而含水率较高试样只有前2个剪切阶段;低含水率试样的剪切"跳跃"现象主要发生在剪切初期,高含水率试样主要发生在剪切后期;低含水率试样在低应力下整体表现为剪胀,随着正应力的增加,剪胀量变小,而高含水率试样则表现为剪缩;高应力条件下试样全部表现为剪缩,且剪缩量随着含水率的增加而增大;剪切试样的抗剪强度整体上都是随着含水率的增大而降低,但降低幅度不大;试样的抗剪强度参数用内摩擦角和"等效黏聚力"表征,"等效黏聚力"随着含水率的增加先增大后减小,而内摩擦角则先减小后增大;土石混合填料抗剪强度曲线呈双线性变化。  相似文献   

6.
加筋土结构的动力性能对公路、铁路、边坡和挡墙等实际工程具有重要意义,因此研究筋-土界面的动力剪切特性具有重要意义。试验选用填料为4种不同粒径范围的粗颗粒土:0.5~1.18 mm,1.18~2.36 mm,2.36~4.75 mm,4.75~8 mm,一种方形网孔的土工格栅,土工格栅的网孔尺寸为30 mm×30 mm,在剪切速率分别为0.25,1,2,5 mm·min-1,相对密实度分别为22%、55%、75%的条件下,研究填料平均粒径与土工格栅网孔尺寸的比值(粒孔比)对土工格栅-粗粒土界面循环剪切特性的影响。研究结果表明:当粒孔比从0.04增大到0.20时,土工格栅-粗粒土界面的剪应力峰值先增大后减小,粒孔比为0.07时,土工格栅-粗粒土界面的剪应力峰值最大;粒孔比分别为0.04,0.07,0.11,0.20时,土样的最终剪缩量分别为2.547,2.583,3.150,5.021 mm,表明随着粒孔比的增大,土样的最终剪缩量增大;同一循环次数下,粒孔比为0.07时,土工格栅-粗粒土界面的剪切刚度最大;粒孔比为0.20时,土工格栅-粗粒土界面的阻尼比最大;同一循环次数下,当剪切速率从0.25 mm·min-1增大到5 mm·min-1时,土工格栅-粗粒土界面的剪应力峰值先增大后减小;随着剪切速率的增大,土工格栅-粗粒土试样的最终剪缩量增大;相对密实度分别为22%、55%、75%的条件下,粒孔比为0.07时,剪应力峰值均达到最大值,分别为66.63,76.79,79.17 kPa。  相似文献   

7.
土石混合料加筋结构常见于高填方边坡工程中,其稳定性受筋土界面相互作用的影响。为了研究土石混合料-土工织物界面的相互作用机理,利用了室内大型直剪仪进行一系列直剪试验,分析了5种含石量(0%、25%、50%、75%、100%)、3种压实度(88%、92%、96%)以及3种竖向应力(100、200、300 kPa)对界面剪切特性的影响,并建立了界面剪胀系数的经验公式。结果表明:界面在低含石量(0%~25%)下表现出剪切软化趋势,在高含石量(50%~100%)下表现出剪切硬化趋势,且剪切应力-剪切位移曲线出现较为明显的波动现象;界面最大竖向位移随含石量和压实度的增大呈现出增大趋势,随竖向应力的增大呈现出减小趋势。界面摩擦角在低含石量下基本保持稳定,而后随含石量的增大表现出先增大后减小的趋势;界面似黏聚力的增长速率随压实度的增大而减小;结合含石量、竖向应力等因素,建立了剪胀系数经验公式,该公式能够较为准确地描述界面的体积变化情况。  相似文献   

8.
为研究黄土在主应力轴循环旋转条件下的变形特性,采用空心圆柱扭剪仪(HCA)开展了2种不同应力路径下的扭剪试验。第1种应力路径为保持主应力轴方向不变,改变偏应力大小,研究黄土在不同主应力轴方向角α和不同中主应力系数b下的变形特性;第2种应力路径为保持偏应力大小不变,改变主应力轴方向,研究主应力轴循环旋转周期对黄土性状的影响。试验结果表明:土样剪切强度与中主应力系数b、主应力轴方向角α相关,当b相同,α=30°时土样剪切强度最大,α=60°时土样剪切强度略大于α=45°时;α相同时,剪切强度>b=1时的剪切强度>b=0.5时的剪切强度;纯主应力轴旋转会使土体产生塑形应变,并且随着旋转周期的增加,土体产生的塑形应变将不断累积。  相似文献   

9.
粒料的回弹力学特性具有非线性和正交异性。为研究此特性,设计了一种综合考虑粒料应力依赖性和正交异性的动态回弹特性解决方案,该方案包含:改进的重复加载三轴试验方案、正交异性系数α、Uzan应力依赖模型。改进的试验方案包含多个应力水平,每个应力水平上通过施加应力扰动,实现压缩、拉伸和剪切3个应力状态;α表征粒料的正交异性程度,并减少正交异性增量本构方程中的未知数;Uzan三参数应力依赖模型表征模量和泊松比的应力依赖性。推导了增量本构方程,并计算了粒料的5个回弹特性参数:竖向模量、水平向模量、竖平面内泊松比、水平面内泊松比,剪切模量。使用该方案对3种粒料(石灰岩、砾石、花岗岩)进行了室内试验研究,计算了粒料的回弹特性参数,分析了应力水平、级配和含水率对动态回弹特性的影响。结果表明:①该解决方案同时考虑了粒料的正交异性和应力依赖性,实测数据和计算数据相关性良好,计算结果准确合理;②粒料的回弹模量和泊松比都具有应力依赖性,动态回弹模量主要受体应力的影响,泊松比受剪切应力的影响更大;③粒料的回弹模量和泊松比均存在显著的正交异性,当剪应力较大时,有可能出现剪胀现象;④各回弹特性参数随影响因素的变化规律正确,该方案能够显著地反映出各因素对回弹特性参数的影响。  相似文献   

10.
循环剪切作用对格栅与砂土界面剪切特性的影响   总被引:1,自引:1,他引:0  
为了研究循环剪切作用对砂土与土工格栅界面剪切特性的影响,采用单调直剪试验与循环剪切后单调直剪试验,研究了竖向应力、循环剪切位移幅值等因素对筋土界面剪切强度和剪切体变特性的影响,并对比分析了单调直剪试验和循环剪切后单调直剪试验的结果。结果表明:在一定的循环剪切位移幅值内,界面剪应力峰值随着剪切幅值的增加而增长;循环剪切作用使得筋土界面的似粘聚力和摩擦角有一定程度的提高;循环剪切后单调直剪试验所得界面峰值剪切强度和残余剪切强度明显高于单调直剪试验结果。  相似文献   

11.
崔凯  荆祥 《中国公路学报》2019,32(12):123-131
为分析川西地区混合土地震荷载作用下的动力特性,针对该地区保留全部粒径的天然混合土,对3组土分别采用筛分法剔除60,20,10,5 mm粒径颗粒,制备粗颗粒含量不同的天然混合土土样,利用DJSZ-150粗粒土动、静两用三轴试验机进行大型动三轴试验,采用Hardin-Drnevich双曲线模型(H-D模型)拟合动应力-应变关系曲线,获得Gd/Gmax-γλ-γ曲线变化规律,分析不同围压和粗颗粒含量对川西混合土动剪切模量Gd和阻尼比λ的影响作用。结果表明:混合土动剪切模量Gd、阻尼比λ均随围压及大于5 mm的粗颗粒含量的增大而增大,原因是随着围压增大,粗细颗粒的接触增多,土体结构更加紧实,提高了颗粒壁隙间的动摩擦力,增大了能量传递时的耗损,导致动剪切模量与阻尼比随之增大;当粗颗粒含量小于40%时,细颗粒构成土骨架,粗颗粒的接触被细颗粒阻隔,导致其对动剪切模量及阻尼作用贡献不大,此时动剪切模量和阻尼比随粗颗粒含量增加而增加的速度较慢,当粗颗粒含量为40%~60%时,混合土中粗颗粒骨架形成,且细颗粒有效填充了粗颗粒间的孔隙,粗颗粒在土中起主导作用,此时动剪切模量与阻尼比随着粗颗粒含量的增加而快速增加,当粗颗粒含量大于60%时,粗颗粒的增加无法进一步增强其骨架效应,而此时细颗粒间的胶结作用随粗颗粒的增多导致细颗粒的相应减少而减弱,动剪切模量和阻尼比随粗颗粒含量增加而增加的趋势不明显。  相似文献   

12.
基于扰动状态理论的生物酶改良膨胀土K-G模型   总被引:1,自引:0,他引:1  
以生物酶改良膨胀土的非线性弹性本构关系为研究对象,提出基于扰动状态理论的修正K-G模型。首先开展不同生物酶掺量条件下的重塑膨胀土样的等向固结排水试验和等p三轴固结排水剪切试验,研究生物酶改良膨胀土的应力-应变关系特征,基于非线性弹性K-G模型,分析生物酶掺量对膨胀土的切线体积模量Kt和切线剪切模量Gt中相关参数的影响规律。采用生物酶掺量作为扰动掺量,以试验和扰动状态概念为基础建立扰动函数,基于扰动状态理论对K-G模型进行修正,以反映生物酶掺量对改良膨胀土应力-应变扰动关系,使本构关系符合土体的实际变形过程,更合理地描述生物酶改良膨胀土的非线性弹性应力-应变关系。结果表明:通过对比εv-p及εs-q的试验曲线、K-G模型曲线与修正K-G模型理论计算曲线,体应变εvK-G模型预测值小于试验值,而剪应变εsK-G模型预测值大于试验值,修正K-G模型的体应变εv和剪应变εs的预测值都与试验值较为接近。修正K-G本构模型中各参数物理意义明确,与K-G模型中的参数确定方法一致,可以较合理地描述不同生物酶掺量扰动条件下改良膨胀土的变形特性。  相似文献   

13.
为研究动力及含水率变化对路堤粗粒土填料力学特性的影响,制作了不同含水率w的路堤粗粒土填料试样,先对其施加一定荷载频率f的动应力,再进行静三轴压缩试验,分析不同试样静偏应力σ0-应变ε1曲线变化规律,之后结合Janbu公式探讨动偏应力σd、w及f与参数n、K的联系,建立初始变形模量Ei、极限偏应力(σ0)ult与各控制变量的拟合公式,提出考虑动力及含水率影响的路堤粗粒土填料改进邓肯-张模型,最后开展验证试验,对比分析该改进模型的有效性。研究结果表明:三轴试验中粗粒土试样在ε1>0.5%时由弹性变形进入塑性变形阶段,不同控制因素下的σ01曲线在0.5%<ε1<2.0%范围内出现明显差异,切线变形模量Et在该范围内迅速降低,降低幅度达到58%~76%;当ε1>2%时Et变化逐渐减缓并...  相似文献   

14.
先期振动对土石坝地震变形影响显著。通过开展不同先期动应力作用下的动三轴试验,研究了先期振动对未加固堆石料和高聚物胶凝堆石料动变形特性的影响。结果表明:先期振动对未加固堆石料和高聚物胶凝堆石料的弹性轴应变无明显影响,但显著降低了其塑性轴应变;未加固堆石料和高聚物胶凝堆石料的残余变形在先期振动影响下显著减小,与未经受先期振动的试样相比,先期动应力为40%围压的试样,最大残余剪应变降低幅度和最大残余体应变降低幅度的平均值分别为48.1%和42.0%;先期动应力为80%围压的试样,最大残余剪应变降低幅度和最大残余体应变降低幅度的平均值分别为80.9%和71.6%。先期动应力幅值越大,再次经历动应力时未加固堆石料和高聚物胶凝堆石料产生的残余变形越小,抵抗变形能力提高越明显。最大残余变形的降低幅度与固结比、围压及高聚物含量无关。随后修正了沈珠江动残余变形模型,修正后的残余变形模型可以反映高聚物对堆石料残余剪应变和残余体应变的影响。与未经受先期振动的试样相比,先期动应力为40%围压的高聚物胶凝堆石料(高聚物质量比Rp=2%)的改进残余变形模型参数c1c4分别降低了27.7%和61.2%;先期动应力为80%围压的高聚物胶凝堆石料(Rp=2%)的改进残余变形模型参数c1c4分别降低了68.8%和79.3%。  相似文献   

15.
为了研究碳纤维水泥基复合材料对节理岩体的加固效果、加固机理及最优碳纤维掺量值,在超细水泥、粉煤灰、矿粉、硅灰等修复材料中,考虑0、0.25%、0.50%、0.75%、1.00%这5种不同的碳纤维掺量,对加固前、后节理岩样分别进行了直剪试验。研究结果表明:加固前、后节理岩样的剪切力-剪切位移曲线变化特征明显,由无峰值强度曲线转变为有峰值强度曲线,并出现明显的应变软化阶段和残余强度阶段;碳纤维掺量(质量分数)从0增加到1.00%时,节理岩样的峰值抗剪强度、残余抗剪强度在5种法向应力下分别提高13.0%~54.1%和0.61%~44.7%,剪切刚度增大32.4%~216.8%,黏聚力和摩擦角分别增大127.3%~266.5%和4.3%~20.4%;当碳纤维掺量为0.75%左右时,节理岩样加固后抗剪性能的综合增强效果最为明显;结合节理面形貌特征和加固后剪切破坏面特征分析发现,水泥浆复合材料对节理面具有较好的充填作用和胶结作用;在水泥基材中掺入碳纤维时,一方面类似于“加筋”材料,可在纯水泥浆的基础上进一步提高浆体的强度和整体性,限制节理面剪切过程中微裂纹的开展,另一方面碳纤维对受剪浆体提供了较好的“锚固”作用,进一步增加浆体与节理面的粘结性能,使得浆体本身、浆体与节理面之间胶结面的抗剪性能明显增强,从而显著提升加固后节理岩体的综合抗剪性能。  相似文献   

16.
天然土体均具有一定的物质组成和内部结构,因而表现出不同的工程特性。为探求软土在剪切变形过程中微观结构的演化规律,研究土体的宏观物理力学性质与微观结构之间的相互关系,对珠江三角洲饱和软土进行真三轴剪切试验和核磁共振试验,获取不同剪切速率条件下不同应变阶段的软土力学响应特征和孔隙微观结构参数。试验结果表明:三轴试验前后软土的孔径均主要集中在1~20 μm区间,经三轴剪切试验后软土的微观结构及其参数均发生了不同程度的变化,如平均孔隙半径减小,孔隙率降低,含水率减少。在剪切过程中,软土的剪切变形存在一个应变阈值(竖向应变4%~5%),当竖向应变小于应变阈值时,软土的小孔隙的百分数随应变增大而减小,中、大孔隙百分数随应变增加而增加;当竖向应变大于阈值后,孔隙分布随应变的变化趋势则反之。软土的微观结构形态及其微观结构参数变化受剪切速率和土的应变值这2个因素影响较明显;孔隙形状参数(S/V)随土的应力状态(广义剪应力q和应变εs)有规律变化。此外,从微观结构层次和分子动力学角度揭示了软土剪切力学行为,软土剪切过程实质是土微(细)观结构不断自我调整的过程,土体的受力变形在微观上主要表现为孔隙大小和形状的变化。  相似文献   

17.
为了研究FRP筋与普通钢筋(HRB筋)混合配筋混凝土梁在受弯过程中的裂缝开展机理及其计算方法,设计制作8根混合配筋混凝土梁和3根普通钢筋混凝土梁。通过改变FRP筋种类、FRP筋直径、钢筋强度、FRP筋和钢筋配筋面积比以及截面配筋率等参数,对比分析试验梁抗弯承载力、裂缝分布、平均裂缝间距和裂缝宽度的变化规律。给出FRP筋与钢筋混合配筋混凝土梁抗弯承载力建议计算公式,并结合相关试验数据对其预测值和试验值进行分析,证明建议计算公式的精确性和合理性。根据传统的钢筋混凝土梁裂缝宽度计算理论,结合现有试验结果,对21根混合配筋混凝土梁的受弯开裂特性进行综合分析,提出正常使用阶段平均裂缝间距lm和受拉纵筋应变不均匀系数ψ的计算公式,修正裂缝宽度短期扩大系数τs,并在此基础上提出短期最大裂缝宽度的建议计算公式。结果表明:混合配筋混凝土梁正截面仍符合平截面假定;随截面配筋率的增大,混合配筋混凝土梁的平均裂缝间距和最大裂缝宽度均逐渐减小;单层配筋混合配筋混凝土梁的最大裂缝宽度比双层配筋大;平均裂缝间距建议计算公式精度较好;短期最大裂缝宽度建议公式的计算值与实测值吻合较好。相关研究成果可为混合配筋混凝土梁的设计提供一定的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号