首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
吊钟岩大桥主跨为跨度140 m上承式拱桥,拱肋为劲性钢管骨架混凝土箱形结构.文章重点介绍钢管骨架转体施工中的施工控制计算模型、转体施工技术要点及施工应力、位移的监测情况.  相似文献   

2.
悬臂浇筑与劲性骨架组合施工法是一种新型的钢筋混凝土拱桥施工方法。相对于悬臂浇筑施工,该方法不仅可以缩短拱圈悬臂浇筑段的长度,减少悬臂的质量,降低对扣锚系统的要求,而且能够尽快形成拱结构,从而减少施工风险,缩短工期,提高钢筋混凝土拱桥的经济性,特别适用于200~400 m跨径的拱桥。用组合单元法计算了H型钢劲性骨架和钢管混凝土劲性骨架拱圈截面的刚度,建立有限元模型分析了不同劲性骨架长度对拱顶竖向位移的影响。结果表明:H型钢劲性骨架和钢管混凝土劲性骨架对拱圈截面拉压刚度增幅约为5. 66%,竖向抗弯刚度增幅约为6. 54%,且H型钢劲性骨架增幅稍大于钢管混凝土劲性骨架;劲性骨架长度在70~130 m时,拱圈刚度几乎不随劲性骨架长度变化而变化。综合各种因素得出悬臂浇筑与劲性骨架组合施工法的劲性骨架长度在跨径的0. 33~0. 62倍之间是较为合适的。  相似文献   

3.
吊钟岩特大桥主跨为 115 0m上承式劲性骨架钢筋混凝土箱拱 ,其劲性骨架采用混凝土钢管拱。介绍其钢管拱运用自制缆索吊安装的施工方法。  相似文献   

4.
劲性骨架法是目前特大跨径混凝土拱桥施工的主要方法,钢管拱的加工制作是钢管混凝土拱桥施工成败的关键之一。以云桂铁路南盘江特大桥钢管拱加工制作为例,从劲性骨架加工制作的总体规划、技术准备、材料的预处理、片段的分段制作程序、钢管拱卧拼装匹配组装、钢管拱吊装节段立拼组装等进行了详细的介绍,以供同类工程参考。  相似文献   

5.
研究目的:桥梁施工方法是桥梁设计时必须考虑的重要因素。平转施工作为一种修建桥梁的有效方法,已经在山区桥梁建设中得到广泛应用。大岩洞大桥主桥采用上承式钢管混凝土劲性骨架箱形拱,平转法施工。为保证施工期间结构安全,需采用合理的工艺设计、控制措施、控制指标和指导性意见。通过总结本桥设计施工经验,可为今后类似桥梁施工提供借鉴。研究结论:对于重达5237t的转体结构,采用混凝土球铰平转施工为国内首次。本文结合工程实例,详细介绍了转体结构构造细节、静力计算、施工控制指标、安全措施。本桥历时9h,劲性骨架平转到位。合拢精度满足设计要求,结构各项指标和设计相符。转体施工过程中,应实时监控结构的应力和变形,采用现场实测数据修正计算模型,以使理论计算和实际相吻合,保证桥梁的安全施工。实践证明了平转施工方法可以有效解决山区桥梁施工的问题。  相似文献   

6.
钢管混凝土劲性骨架拱桥在公路行业应用较广泛,但在铁路桥中应用较少。以钢管混凝土作为劲性骨架的铁路拱桥在国内更是屈指可数。由于铁路活载大,故铁路拱桥从设计到施工都比较复杂,且铁路范围内没有成熟的施工经验和铁路行业标准。结合落布溪大桥成功建设,探讨了拱上连续梁的施工工艺、施工难点及解决措施,可为今后同类型铁路桥梁的施工提供参考和指导。  相似文献   

7.
沪昆客专北盘江特大桥劲性骨架施工控制研究   总被引:2,自引:0,他引:2  
沪昆客专北盘江特大桥为主跨445 m的上承式钢筋混凝土拱桥,采用钢管混凝土劲性骨架法施工。该桥劲性骨架结构复杂,工艺流程多,作业难度大(高空300 m),安装节段多(40节段),悬臂长度长(222.5 m)。通过布设严密的控制网,实施合理的劲性骨架施工方案,通过劲性骨架工艺过程控制及浇筑过程中的应力及线形控制,实现劲性骨架的顺利施工。从原材料采购下料,单元件加工、组拼、胎架预拼及架设安装等各个环节严格把控,以实现成拱后线形、结构应力及焊缝质量均符合设计及要求。研究成果对同类型桥梁施工提供参考和借鉴。  相似文献   

8.
《铁道建筑》2007,(1):28-28
吊钟岩特大桥全长510·36 m,主跨140 m,桥高79 m,是我国首座劲性钢骨架转体铁路拱桥,也是赣龙铁路全线科技含量最高的工程项目。全桥劲性钢骨架有7 000多个焊点,转体质量达3 012 t,施工难度之大、工艺之复杂实属罕见。施工中,采用了平衡重转体劲性钢骨架法施工工艺。首先将劲性  相似文献   

9.
针对劲性骨架混凝土拱桥主拱圈常用的箱型截面,总结归纳主拱圈混凝土主要分环和浇筑方式及其影响因素,提出分环和浇筑的基本原则,并采用有限元法模拟分析分环浇筑方式对单箱三室截面劲性骨架混凝土拱桥内力与变形的影响。结果表明:箱形截面能较好地满足劲性骨架拱桥主拱圈受力和构造的要求,是大跨度桥梁的理想截面形式;主拱圈混凝土分环和浇筑方式主要由劲性骨架结构承载能力、施工操作性、结构整体性和经济性4个因素决定;进行分环和浇筑应遵循的基本原则包括减少分环数量,对称分环和浇筑,尽快完全包裹劲性骨架弦管,尽快形成完整箱室以及将截面复杂部分划分至易于施工混凝土环内等;跨径416 m劲性骨架拱桥的三室箱形截面主拱圈采用合理的分环和浇筑方式,可以分别降低5.9%的劲性骨架钢管应力和16.8%的管内混凝土应力,减少7.8%的拱顶下挠位移。  相似文献   

10.
大跨度转体拱桥为了实现自重轻,施工方便,往往转出的半跨桥体为开口薄壁板结构,导致桥梁整体在转动及二期荷载施加过程中的稳定问题显得较为突出。为改善其稳定性,半跨转体桥体采用带混凝土底板的小直径钢管混凝土劲性骨架即半跨钢混组合结构的箱形拱空间网架。以四川化成大桥(净跨150 m)为研究对象,建立有限元模型,并对其从施工到成桥过程中的不同阶段进行稳定性分析,找出了结构易发生失稳的薄弱环节,重点分析了二期混凝土浇筑顺序对结构稳定性的影响。通过有限元分析,给出了不同施工阶段的稳定安全系数,得出更安全的施工方案,同时对成桥阶段拱桥的稳定性进行了分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号