首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对出现腹板斜裂缝的重载铁路32 m预应力混凝土简支T梁(图号:专桥2040),分别假定4种不同斜向开裂状态并建立实体有限元模型,对运营荷载作用下在距梁端4~8m的(斜裂缝纵向分布区域)腹板混凝土主拉应力、预应力钢束和箍筋应力,以及跨中挠度进行计算分析.结果表明:腹板斜裂缝对梁体受力影响显著,与完好梁体相比,预设斜裂缝...  相似文献   

2.
以朔黄铁路近2000孔混凝土梁为研究对象,开展重载运输对既有铁路混凝土梁的影响分析、常见病害统计及原因分析,并提出相应的加固处理对策。结果表明:重载运输导致桥梁结构主梁、墩台基础、支座等结构横向、竖向和纵向受力大幅增加,活载储备量降低,振动和疲劳加剧,进而引起混凝土梁体开裂、挠度过大、横向振动加剧、梁端顶死等一系列病害大量出现并迅速扩展,轴重和运量的大幅提高是病害快速出现和发展的直接原因,通过采取体外预应力加固、辅助钢梁加固和裂缝灌封等措施,可以达到提高混凝土梁结构承载能力、抗裂性能和耐久性能的目的。  相似文献   

3.
根据对我国高速铁路桥梁动力性能测试数据的分析和相关研究,将高速铁路常用跨度简支箱梁运营性能的检定划分为抽样桥梁的周期性检定、提速桥梁的检定以及运营状态异常或有重大缺陷和损伤等桥梁的检定3类;检定中以梁体的自振特性、竖向刚度(挠度和梁端转角)和竖向动力响应作为简支箱梁运营性能的竖向评定参数,以梁体和桥墩的横向振幅、无砟轨道相邻梁端两侧的钢轨支点横向相对位移作为简支箱梁运营性能的横向评定参数。根据对高速铁路联调联试得到的桥梁动力性能实测样本的统计分析并按可信度97.5%计算,分别给出250和350km·h~(-1)高速列车运行速度下跨度为19.5~39.1m的预应力混凝土简支箱梁运营性能评价参数的建议通常值:梁体竖向自振频率分别为5.0~8.4和5.5~9.9 Hz,竖向阻尼比为2.0%~3.5%,挠跨比分别为1/12 000~1/48 00和1/11 000~1/7 200,梁端竖向转角分别为0.30‰~0.65‰和0.25‰~0.45‰rad,跨中竖向和横向振幅分别为0.20~0.35和0.10~0.15mm,跨中竖向振动加速度为0.25~0.40m·s~(-2),墩顶横向振幅以墩全高与墩横向平均宽度之比在0.5~4.2范围内为条件选取,无砟轨道相邻梁端两侧的钢轨支点横向相对位移为0.5mm。针对预应力混凝土简支箱梁运营性能评价参数的测试方法提出建议。  相似文献   

4.
研究目的:针对既有线32 m简支T型梁桥在列车提速时横向刚度不足、振幅过大以及重载列车过桥时承载力不足的问题,提出通过预制混凝土横隔板及体外预应力钢绞线对桥梁进行横向和纵向复合快速加固方法,通过ANSYS和多体动力学软件UM(Universal Mechanism)进行桥梁加固前后静力性能以及车桥耦合动力性能分析。研究结论:(1)提速列车过桥时主要问题是横向振幅过大,而横向加固能够有效提高梁体的横向刚度,使桥梁的横向一阶、扭转一阶自振频率显著提升,减小列车过桥时的动力响应;(2)重载列车过桥时主要问题是承载力不足,竖向挠度过大,竖向加固在提高承载力和竖向一阶自振频率的同时,会导致梁体的横向自振频率变小,需在纵向加固同时进行横向加固;(3)证明了车桥系统共振理论推导公式计算结果的正确性以及桥梁加固后发生共振时桥梁的安全性;(4)加固后桥梁能够满足提速列车以及重载列车运营要求;(5)此加固方法适用于工期紧张且不能中断运营的铁路既有简支桥梁的加固。  相似文献   

5.
重载铁路简支T梁横向刚度不足,在运营过程中存在横向振幅超限现象,影响铁路运营安全。本文依托山西阴(塔)火(山)铁路桥梁加固工程进行荷载试验,对铁路简支T梁横向预应力加固方法进行研究,提出了一种用于模拟分析铁路简支T梁横向加固效果的有限元方法,并将计算结果与加固前后荷载试验数据予以对比。研究结果表明:采用横向预应力加固方法后,桥梁横向振幅最大降低32. 7%,平均降低9. 9%;自振频率最大增加245. 4%,横向自振频率平均增加36. 5%。铁路简支T梁横向预应力加固方法对桥梁横向刚度的提高效果显著,可以应用于简支T梁加固工程。  相似文献   

6.
研究目的:桥梁梁端转角将使无砟轨道扣件系统产生附加的上拔力或下压力,从而导致扣件系统失效,因此必须限制桥梁的梁端转角。为研究重载铁路桥梁单侧梁端转角限值,本文建立重载铁路梁端扣件系统受力分析有限元模型,研究梁端转角、梁缝处扣件间距、胶垫刚度、梁端悬出长度对梁端扣件受力的影响,并从限制扣件上拔力不超过弹条扣压力的角度提出不同胶垫刚度、不同悬出长度下的单侧梁端转角限值。研究结论:(1)梁缝处扣件间距对扣件系统受力影响较小,而胶垫刚度和梁端悬出长度对扣件系统受力影响较大;(2)扣件系统胶垫刚度越大、悬出长度越大,梁端转角限值越小;(3)桥梁梁端顺时针转角限值小于逆时针转角限值;(4)具体的梁端转角限值应根据扣件的设计参数确定,并进行检算;(5)本研究结论可为重载铁路无砟轨道结构及桥梁的设计提供参考。  相似文献   

7.
在起吊、移动箱梁的过程中,梁体吊梁孔周围普遍会产生开裂现象。吊梁孔横向间距的减小会对梁端受力分配产生不利影响。本文基于现有的简支箱梁竖向加固方法并结合一非标梁的实际工程情况,提出了一种张拉螺纹钢辅助吊梁方法。根据一新建高速铁路简支(箱形)非标梁采用张拉螺纹钢辅助吊梁方法前后的吊梁试验结果,通过对比实测应变与裂缝发展情况,证明该方法有利于减少吊梁过程中梁体开裂的可能性并降低混凝土应力水平。  相似文献   

8.
为获得大纵坡山地齿轨桥梁的合理结构形式,在深入分析大纵坡齿轨桥梁特有技术难点的基础上,开展不同梁型比选,并以250‰设计坡度为例,采用多参数影响的分析方法,分析不同跨度、墩身刚度和结构形式等对结构受力的影响。研究表明,鉴于山地齿轨交通特点,梁型推荐采用T梁形式;结构纵向变形引起的梁端竖向位移是控制结构设计的主要因素;为保证高精度、顺畅的齿轨啮合,尽量选择温度联长较小的结构;在同等温度联长的情况下,采用墩梁固结或提高墩身纵向刚度可有效控制大纵坡齿轨桥梁梁端纵向位移。  相似文献   

9.
研究目的:为研究大轴重列车作用下桥梁结构的动力响应,本文以30 t大轴重列车和重载铁路线上常用跨度32 m预应力混凝土简支T梁为研究对象,结合现场实测数据,基于多体动力学理论和有限元法建立大轴重列车-轨道-桥梁三维耦合精细化有限元模型,并验证有限元模型的准确性。通过计算大轴重列车作用下桥梁结构的动力响应,分析大轴重列车编组长度、列车轴重、列车运行速度以及桥墩高度等因素对桥梁结构动力响应的影响规律。研究结论:(1)当列车编组数达到6节以后,列车编组数增加仅影响桥梁结构的动力响应持续时间,不会对桥梁结构的动力响应峰值产生影响,在计算长大编组列车通过中小跨度桥梁时可简化为6节编组进行计算;(2)桥梁结构的动力响应与重载列车的轴重有较明显的相关性,桥梁跨中竖向位移和跨中横向位移均随着列车轴重的提高而增加,增幅呈近似线性增加的趋势;桥梁跨中竖向加速度和跨中横向加速度均随着列车轴重的提高而逐渐增加,且增幅越来越大;(3)桥梁结构的动力响应均随着列车运行速度的提高而增加,跨中加速度响应随列车运行速度的提高增幅比跨中位移响应增幅大;(4)桥梁墩高的变化对桥梁结构的竖向动力响应影响较小,而对横向动力响应影响较大;(5)本研究成果可为重载铁路桥梁的设计和既有线铁路桥梁强化改造提供参考。  相似文献   

10.
在日常维护管理过程中,发现32 m预应力混凝土简支T梁在开通运营1~2年内裂缝病害量多、面广、发展较快,裂缝主要分布于梁体腹板及下翼缘处,裂缝走向主要沿预应力管道方向。针对此病害,通过结构基本状态检测、无损检测等工作,掌握了裂缝的分布、形态和宽度,钢筋及钢绞线锈蚀情况等;通过桥梁运营性能检验,分析桥梁结构竖向和横向刚度是否满足《铁路桥梁检定规范》(铁运函[2004]120号)中的要求。封闭涂装处理后经过10年的运营,部分裂缝重新开裂,但复测结果显示,梁体混凝土碳化深度未超过钢筋保护层厚度,钢筋锈蚀电位及混凝土电阻率测试显示钢筋锈蚀较慢,不存在大规模锈蚀的可能;上部结构横向振幅及横向加速度均满足《铁路桥梁检定规范》的要求。  相似文献   

11.
多跨斜交简支T梁桥车桥耦合振动分析   总被引:1,自引:0,他引:1  
针对简支T梁的受力特性,采用梁壳组合模型模拟简支T梁,分别建立列车一斜交桥梁系统和列车一正交桥梁系统的空间耦合动力学模型.分析CRH动车组以不同速度分别通过多跨斜交简支T梁桥和多跨正交简支T梁桥时机车车辆及桥梁的动力特性.结果表明:CRH动车组通过正交桥和斜交桥时,机车车辆的振动响应随车速提高而增大,而且斜交桥的机车车辆振动响应大于正交桥;当列车通过斜交桥的车速不超过200km·h-1时,列车的乘坐舒适度达到"良好"标准以上,但乘坐舒适度较通过正交桥时差;列车通过斜交桥时安全性能够得到保障;斜交桥的各项动力响应均在容许值范围以内,斜交布置虽对桥梁的横向振动非常不利,但对抑制桥梁中心线处的竖向振动有利.  相似文献   

12.
大跨度铁路桥梁刚度统一描述方法探讨   总被引:2,自引:0,他引:2  
研究目的:本文在已建成的桥梁基础上,进一步开展了大跨度铁路桥梁刚度描述方法和预应力混凝土连续梁(刚构)桥刚度的限值研究,以提出一种大跨度铁路桥梁刚度问题的统一描述方法。研究结论:采用设计荷载下的梁端横向、竖向、扭转角及非梁端处横向、竖向、扭转角的变化率(即曲率)描述桥梁刚度,推导了大跨度铁路预应力混凝土连续梁(刚构)桥刚度设计参考限值。该方法不但能方便地描述简支梁的刚度问题,与现有规范相衔接,而且在描述规范所不能涵盖的大跨度桥梁、特殊桥梁结构刚度问题时也非常方便。研究方法和研究成果有利于提高桥梁刚度研究和设计水平,为发展更大跨度桥梁提供技术支撑。  相似文献   

13.
研究目的:武广客运专线汀泗河特大桥等几座特殊结构的桥梁存在梁缝过大以及梁端悬臂长度过长的问题,桥梁梁端产生变形时,会造成无砟轨道扣件系统上拔力超过扣压力,影响旅客舒适度,严重时也将对行车安全构成威胁。通过研究,提出可行的设计方案,解决梁端轨道结构受力存在的问题。研究结论:通过在桥梁端部梁缝处引入过渡板的结构措施,建立了梁端过渡板结构的模型,分析了梁端转角和梁缝两侧桥梁竖向相对位移工况下有过渡板和无过渡板时轨道结构受力的区别,结果表明,过渡板能够减小扣件系统的最大压力、最大拉力和钢轨附加弯矩20%~80%,可以通过在端部设置过渡板的结构措施减小轨道结构的受力,保证无砟轨道系统正常工作。  相似文献   

14.
以连(云港)镇(江)铁路五峰山长江大桥为工程背景,基于有限元分析,研究该桥在基础不均匀沉降、温度荷载、风荷载、竖向活载及制动力作用下的梁端变位特征及荷载组合效应。结果表明:梁端纵向位移主要影响因素为温度荷载和竖向活载,其次为纵向风荷载、基础沉降和列车制动力;梁端竖向转角受竖向活载和基础不均匀沉降影响最大;横向极限风荷载和温度荷载对梁端横向位移和转角存在一定影响;主、引桥之间的横向位移差引起梁端横向折角。除考虑梁端纵向位移和竖向转角外,铁路悬索桥在设计时也应关注梁端横向位移和横向折角,可通过结构约束体系、端横梁局部合理设计及主、引桥支座位置优化等措施满足梁端空间变位要求,从而为大位移梁端伸缩装置的设计和梁端区域行车的安全平稳提供有利条件。  相似文献   

15.
为验证客运专线时速250 km的32 m简支箱梁的使用性能,选择4孔梁进行现场预制和试验。在梁体预制过程中顶板底面中心产生了顺桥向裂缝,裂缝在白天、夜晚呈现明显张合趋势。为分析竖向温度梯度对裂缝的影响开展了试验及理论研究。研究结果表明:存梁期间日照引起的竖向正温度梯度是桥面板裂缝产生的主要原因;裂缝主要影响结构的使用耐久性,对受力影响较小。建议有砟箱梁设计时充分考虑轨道铺设前竖向温度梯度的影响。  相似文献   

16.
沪通铁路为设计时速200 km的客货共线铁路,桥梁采用预制架设简支箱梁结构,其中部分单线梁为适应高架站线情况,在通桥(2014)2231-Ⅳ的基础上切除了悬出的单侧翼缘板,对结构设计进行了改进,为此开展了静载试验以验证此类单线箱梁的受力性能。试验内容包含静载弯曲抗裂试验、梁端和桥面板受力性能试验。试验结果表明:实测箱梁最大挠跨比为1/3953,梁体刚度满足设计要求;加载至1.2倍设计荷载时箱梁没有开裂,结构抗裂安全性满足设计要求;梁端静载试验加载至架梁最大支反力时,梁端端面没有产生裂缝;桥面板受力性能试验加载特种活载、运营荷载时,桥面板测试区域没有产生裂缝。箱梁满足沪通铁路时速200 km客货共线使用要求。  相似文献   

17.
铁路专用线是近几年快速发展的铁路建设形式之一,重载小半径铁路专用线更是主要的发展方向。晋中南铁路专用线采用300 k N轴重列车活载,其单线最小曲线半径300 m,双线最小曲线半径600 m,超出32 m常用跨度简支T梁梁图适用范围,而采用更小跨度的简支T梁或连续箱梁不经济。根据铁路小半径重载桥梁的特点,提出小半径曲线下重载铁路简支T梁的设计方案。重点研究适用于小半径简支T梁的偏载计算,分别提出恒载偏载和活载偏载的计算方法。目前多条专用线已经通车运营,实践证明设计方案是合理可行的。  相似文献   

18.
随着我国重载运输的持续发展,列车编组增加,车辆轴重增大,运营密度增大,现役桥梁出现横向振动过大危及行车安全的现象。本文以朔黄铁路中比重较大的32 m预应力混凝土简支T梁+双线分离式桥墩+扩大基础的结构形式为研究对象,采用有限元分析结合现场实测的方法,对增加T梁横向联接刚度和桥墩横向刚度的加固效果进行了研究。结果表明:仅增加T梁横向连接刚度,使桥跨结构横向振动得到抑制,仅增加桥墩横向刚度,使桥跨和桥墩横向振动均得到有效抑制,且对桥跨横向振动抑制效果优于增加T梁横向连接刚度,采取同时增加T梁横向连接刚度和桥墩横向刚度的方法对桥跨横向振动抑制效果最优,对桥墩横向振动抑制效果略优于仅增加桥墩横向刚度。  相似文献   

19.
针对T梁桥拼宽后基础沉降造成的不利受力,以部分典型拼宽桥沉降差监测数据为依据,将拼宽部分沉降简化为线性沉降和整体沉降。基于某T梁桥拼宽工程,采用Midas FEA建立实体模型,分析沉降应力,得出拼宽T梁桥受力最不利位置为支点竖向截面接缝处。研究结果表明:新旧T梁最佳连接方式为在接缝处跨内设置横隔板,而梁端不设置;采用该连接方式,以上部结构最大拉应力是否超过混凝土抗拉强度标准值作为控制标准,得出简支和连续T梁桥拼宽部分线性沉降下容许沉降差分别为8和7 mm,任意相邻2片T梁,尤其是接缝处新旧T梁间的相对沉降差要控制在3 mm以内。  相似文献   

20.
我国快速发展的经济对铁路运输能力的要求不断提高,既有铁路重载扩能运输改造进程不断推进,随之提高的列车轴重必然会降低既有铁路桥梁的活载储备量,从而导致T梁的整体刚度和耐久性下降。通过对不同跨径桥梁活载储备量的计算分析,进而选取跨度12 m混凝土T梁作为研究对象进行静力适应性分析,对梁体跨中截面主筋应力、梁体跨中截面上翼缘混凝土压应力及梁体跨中底板裂缝宽度进行检算;并且建立动力有限元模型,分析不同列车荷载作用对跨中横向加速度及横向振幅的影响规律,并与试验实测结果进行对比分析。研究结果表明:在270 k N和300 k N轴重重载列车作用下,梁体受拉钢筋最底部主筋应力均超过容许值;结构动力响应随着车辆轴重增大而增大; 12 m跨低高度简支钢筋混凝土梁横向动力适应性优于普通高度简支梁,两者均满足开行大轴重重载货车要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号