首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
合成轨枕式无砟轨道结构垂向动力特性分析   总被引:1,自引:0,他引:1  
通过合成轨枕式无砟轨道结构的半车—轨道垂向耦合动力学模型,研究了焊接不平顺激励下,扣件刚度、枕下支承刚度等对结构垂向动力特性的影响。分析表明:扣件刚度、阻尼及树脂砂浆弹性模量对行车安全性及平稳性影响不大。扣件刚度增加,对轨道系统的动力特性有一定影响,其中钢轨位移减少最为显著;扣件阻尼增加后,钢轨垂向振动加速度明显减小;树脂砂浆弹性模量增加,轨枕垂向振动加速度减小显著,钢轨垂向振动加速度增加。  相似文献   

2.
基于国外重载铁路现状,并结合前期研究成果,提出了35~40 t轴重重载铁路有砟轨道结构方案。在高速铁路轨道技术国家重点实验室铺设了有砟轨道实尺模型,通过轨道结构刚度试验、荷载垂向传递试验获得了35~40 t轴重有砟轨道的轨道刚度、枕上支点压力、枕下0.55 m和0.95 m位置基床压应力;通过钢轨倾翻试验得知轨道结构在垂向荷载400 kN、横向荷载165 kN同时作用下,重载扣件安全可靠,轨道结构稳定,验证了该轨道结构具有良好的防钢轨倾翻性能;通过轨枕荷载弯矩试验验证了重载轨枕在垂向荷载单独作用、垂向和横向荷载耦合作用等不同的荷载组合工况下,轨下截面弯矩以及枕中截面弯矩均有一定的安全余量,轨枕强度能够满足35~40 t轴重铁路的承载要求。  相似文献   

3.
研究目的:为研究重载铁路桥上长枕埋入式无砟轨道扣件系统关键设计参数取值,本文基于弹性地基梁理论和车辆-轨道耦合动力学理论,建立32.5 t轴重重载货车-长枕埋入式无砟轨道-桥梁垂向耦合动力学模型,分析扣件刚度、扣件间距对重载铁路桥上长枕埋入式无砟轨道静、动力学性能的影响规律,提出重载铁路桥上长枕埋入式无砟轨道扣件系统设计参数取值。研究结论:(1)钢轨垂向位移和钢轨轨底应力随扣件系统刚度的增大而减小,车体垂向振动加速度、轮重减载率、轮轨力和桥梁垂向振动加速度随扣件系统刚度的增大而增大;(2)钢轨垂向位移、钢轨轨底应力、车体垂向振动加速度、轮重减载率和桥梁垂向振动加速度随扣件间距的增大而增大,但轮轨垂向力随之减小;(3)综合考虑轨道变形以及工程造价,建议重载铁路桥上长枕埋入式无砟轨道扣件系统的静刚度取为40~60 k N/mm,扣件系统的动刚度取为80~100 k N/mm,扣件间距取为0.6~0.65 m;(4)本研究成果可为重载铁路桥上长枕埋入式无砟轨道结构设计提供参考。  相似文献   

4.
为探讨高速铁路扣件间距的合理取值,从钢轨动弯应力、轨道刚度、钢轨位移及轨道动力学等方面对扣件间距的取值进行计算分析,结果表明,当扣件间距从600 mm扩大到1 200 mm时,对轨道状态及列车运行的舒适性影响较小。同时应用"二次弯沉"和"钢轨挠度增量"的概念对扣件间距取值进行探讨,提出高速铁路的扣件间距一般不宜超过687 mm的取值建议。  相似文献   

5.
为研究城际铁路纵向承台式无砟轨道扣件系统关键参数取值,基于车辆-轨道耦合动力学理论,建立客车-无砟轨道-桥梁耦合动力学模型,分析扣件刚度、扣件间距对桥上无砟轨道系统动力响应的影响规律,并基于层次分析法,对桥上无砟轨道系统动力特性进行综合评价。结果表明:随着扣件系统刚度增大,钢轨垂向位移减小,车体振动加速度、轮轨垂向力、轮重减载率和桥梁振动加速度均增大;随着扣件间距的增大,轮轨垂向力减小,车体振动加速度、轮重减载率、钢轨垂向位移和桥梁振动加速度均增大;综合考虑轨道变形以及工程造价,建议扣件系统刚度为50~80 kN/mm,扣件间距为0.6~0.7 m。  相似文献   

6.
为了研究凹形竖曲线上梯形轨道的稳定性,以某城市轨道交通线为例,建立梯形轨道在凹形竖曲线上的叠合梁模型,计算分析在温度荷载、列车垂向荷载和制动力作用下,梯形轨道在凹形竖曲线上的力学特性以及扣件纵向阻力和缓冲垫刚度对轨道结构受力和变形的影响规律。计算表明:由于凸挡台的限位作用,轨道结构在竖曲线上较为稳定;扣件的纵向阻力对钢轨的纵向位移影响较大,为限制钢轨的纵向位移可适当增加扣件的纵向阻力;凸挡台缓冲垫刚度的提高能有效控制钢轨的纵向位移,但会减小缓冲作用,故应合理控制缓冲垫的刚度。  相似文献   

7.
研究目的:为研究列车荷载作用下各关键影响参数对轨道路基结构的受力和变形影响规律,并获得轨道路基最优参数组合,本文通过建立有轨电车短枕埋入式轨道路基有限元分析模型,采用正交试验方法分析扣件刚度、轨道板厚度、支承层厚度、基床总厚度、基床压实指标K_(30)5种因素对轨道路基结构力学特性的影响,为弥补正交试验定量分析的不足,借助层次分析法确定各项评价指标权重系数,最终确定短枕埋入式轨道路基结构的最优参数组合。研究结论:(1)扣件刚度对钢轨位移影响最大,轨道板厚度对轨道板纵向弯矩和路基顶面动应力影响最大,基床压实指标K_(30)对基床顶面变形影响最大;(2)钢轨位移、轨道板弯矩、基床顶面位移和动应力的权重系数分别为0.085、0.583、0.043、0.289;(3)最佳轨道路基设计方案为扣件刚度40 kN/mm、轨道板厚度0.24 m、支承层厚度0.27 m、基床总厚度1.1 m、基床压实指标(K_(30))110 MPa/m;(4)综合运用正交试验和层次分析法可以将定性问题转换为定量问题进行求解,从而使得分析结果更加具有科学性和说服力;(5)本研究成果对有轨电车短枕埋入式轨道路基结构设计具有参考价值。  相似文献   

8.
研究目的:在温度力作用下高速铁路无砟轨道钢轨产生碎弯变形,严重影响行车平稳性、舒适性和安全性。本文将扣件分别假定为连续弹性介质和等间距弹性支座,建立无砟轨道钢轨碎弯分析模型,采用能量法推导相关计算公式,研究扣件刚度与钢轨碎弯波形的关系、碎弯临界温度力、扣件刚度视为连续弹性介质的精度以及为最大限度提高长钢轨稳定性的扣件极限刚度等问题。研究结论:(1)随着钢轨碎弯波长的增加,其临界温度力基本不变,差值不超过1%,但碎弯半波数有了很大的增加,这从理论上解释了碎弯变化的过程,并且有碎弯的长钢轨始终处于不稳定平衡状态;(2)钢轨碎弯存在最不利半波数,并对应最低载荷,主波总波长取10倍扣件间距时,得到主波最不利半波数为5,最低临界温度力为1. 021 5×10~7N;(3)随着扣件刚度的增加,碎弯半波数有所增加,临界温度也升高;随着扣件间距的增加,碎弯半波数也增加,基础模量减小;(4)通过对比分析扣件假定为连续弹性介质和等间距弹性支座计算钢轨碎弯临界温度力,得出当每个半波内有不少于3个扣件时,扣件假定为连续弹性介质能够满足工程精度要求,并且随着半波中扣件数量的增加或者总波长的增加,两者数值更加接近;(5)当半波变形波长为支座间距时钢轨碎弯临界温度力可得最大值,并且随着主波扣件跨数的增加,扣件极限刚度收敛于确定值1. 010 2×10~6N/cm;(6)本研究成果可为高速铁路无砟轨道钢轨碎弯提供理论参考,并可为高速铁路扣件参数的检算及合理性提供计算依据。  相似文献   

9.
弹性轨枕已被应用于国内外多条有砟轨道线路,铺设于路基、桥涵地段以减小道砟受力。为探明隧道内有砟轨道铺设弹性轨枕的适用性及其减振性能,基于动力学理论与有限元法,建立车辆-有砟轨道-隧道空间耦合动力学模型,分析弹性轨枕对车辆、轨道以及隧道动力响应的影响,并对枕下垫层合理刚度进行探讨。结果表明:弹性轨枕能保证隧道内行车的安全性和平稳性,车辆动力学指标变化不大;枕下垫层会导致钢轨、轨枕垂向位移显著增加,但可大幅降低有砟道床动态响应;相比普通有砟轨道,弹性轨枕具有很好的减振效果,隧道壁振动最大减小17dB,发生于80Hz中心频率处;从控制轨道振动和位移、保证减振效果的角度考虑,建议枕下垫层刚度取40~60kN/mm。  相似文献   

10.
研究目的:在总结铁路钢桥轨道结构应用的基础上,根据高速铁路大跨度钢桁梁斜拉桥和轨道结构特点,研究提出轨道结构选型原则,并对比分析有砟轨道、合成树脂枕轨道、板式无砟轨道、双块式无砟轨道的适应性,提出轨道结构选型建议。研究结论:(1)大跨度钢桁梁斜拉桥轨道结构选型应从轨道结构特性、施工性、维修性、综合经济性及环境性等方面综合考虑;(2)有砟轨道结构较为成熟,但结构自重大,养护维修工作量大,从寿命周期成本考虑,综合性能不高;双块式无砟轨道结构简单,自重较轻,但施工顺序对轨道线形有较大影响,对施工工艺要求高;(3)板式无砟轨道自重较轻,对钢桁梁桥适应性良好,且有一定的应用经验;合成树脂枕轨道结构简单、自重轻,维修工作量少,对钢桥适应性强,建议在高速铁路大跨度钢桁梁斜拉桥上研究采用合成树脂轨枕轨道和板式无砟轨道;(4)本文对高速铁路大跨度钢桁梁斜拉桥轨道结构选型有一定参考意义。  相似文献   

11.
运用能量法建立车辆—轨道耦合动力学模型,结合大秦线轨道结构力学参数,分别计算分析了45,50,60和75 kg/m共4种钢轨支承下轮轨系统各结构的动力响应,研究钢轨重型化对轮轨系统动力特性的影响。研究发现:钢轨重型化对车辆系统的动力响应影响较小,而对轨道结构和路基的影响显著;随着钢轨质量及抗弯刚度的增大,车体位移、车轮加速度、轮轨力、钢轨位移、扣件力、轨枕振动位移及枕下支承力降低,车体加速度、钢轨加速度先增大后减小,轨枕加速度增加。  相似文献   

12.
与传统有砟轨道或无砟轨道相比,在大跨钢桥上铺设合成树脂轨枕轨道可大幅度减轻桥梁二期恒载,降低桥梁造价。根据大跨钢桥上合成树脂轨枕轨道的结构特点,建立有限元分析模型,对比分析合成树脂轨枕轨道和有砟轨道的受力特性,对树脂轨枕截面尺寸进行了研究。分析表明:在列车荷载作用下,合成树脂轨枕轨道中钢轨和轨枕的下沉较有砟轨道小,轨距变化量较大,但符合行车要求;树脂轨枕宽度、厚度和支承宽对轨道位移和轨距变化量影响较大,需考虑行车安全和经济性,结合桥梁结构设计方案综合确定。  相似文献   

13.
研究目的:日照温度作用下,桥梁墩身向阳和背阳侧产生温差,从而导致墩顶发生横向位移,进而引起梁体、轨道横向偏移,最终使桥上钢轨产生横向不平顺。为指导桥墩设计和轨道养护维修,本文以高速铁路双块式无砟轨道-简支梁桥为研究对象,采用单位载荷法,分析墩顶横向位移与温差、墩高、墩宽的关系;基于线-桥-墩相互作用原理,推导墩顶横向位移与钢轨变形的映射关系,并提出相应的解析表达式。研究结论:(1)日照温度作用下桥墩墩顶位移与截面方向温差和墩身高度平方成正比,与其截面横向宽度成反比;(2)钢轨随桥墩墩顶横向移动产生的变形与其横向位移成正比,并与扣件间距、钢轨横向抗弯刚度等参数有关;(3)基于墩顶横向位移和钢轨变形之间映射关系的解析表达式,可以根据墩高、墩宽、桥墩温度差等参数,十分方便地得到钢轨横向变形曲线,对于指导桥墩设计和轨道养护维修具有参考价值;(4)本研究成果对于研究桥上其他单元式无砟轨道桥墩横向位移与钢轨变形的映射关系具有参考价值。  相似文献   

14.
本文运用车辆—轨道垂向耦合动力学,借助于ANSYS/LS-DYNA建立了车辆—轨道—桥梁垂向耦合模型.其中车辆子系统的车轮与钢轨之间采用轮轨接触,由赫兹非线性弹性接触理论确定等效线性接触刚度,选择焊接不平顺进行计算,文中选取0.60 m,0.62 m,0.64 m,0.67 m,0.70 m5种城市轨道交通高架桥上扣件间距的轨道结构进行动力学对比计算.研究结果表明,当扣件间距为0.67 m时,各项指标都处于波谷值附近,综合考虑车体加速度波峰值、钢轨的最大垂向加速度和位移、道床板的最大垂向加速度和位移,再结合以钢轨安全性为主,列车舒适性与经济效益为辅的原则,建议扣件间距取0.65~0.68 m.  相似文献   

15.
研究目的:修建于我国沿海软土地区的铁路受地基特性的影响在列车高速运行时会产生较大振动,控制列车运行引起的轨道系统及地基振动响应能够有效提高列车的平稳性、舒适性,并减少对周边环境的影响。本文采用轨道系统-饱和地基耦合模型研究饱和地基上轨道系统的振动特性,探讨扣件刚度的选取对轨道振动响应的影响。研究结论:(1)扣件刚度对钢轨位移和加速度响应均有明显影响;(2)增大扣件刚度能够有效减少钢轨的位移响应;(3)增大扣件刚度能够降低低速列车的钢轨加速度响应,但高速列车引起的钢轨加速度响应随扣件刚度的增大有所增加;(4)本研究结论可为认识交通活动中振动现象的本质、解决饱和软土地区列车和环境振动问题、优化轨道系统设计和施工提供理论指导。  相似文献   

16.
建立钢弹簧浮置板轨道结构有限元模型,对其进行静力学分析。首先分析了剪力铰对钢轨和浮置板垂向位移的影响;其次分析了弹簧支座间距对浮置板应力和弯矩分布的影响;最后计算了不同扣件刚度和支座刚度组合时浮置板轨道结构的变形和受力,为今后优化钢弹簧浮置板轨道结构的设计提供了理论依据。  相似文献   

17.
有砟轨道在施工阶段存在大量的钢轨接头会加剧轮轨间冲击和振动,造成钢轨伤损,影响轨道平顺性,不利于工程车辆行车安全,合理的道床刚度能减缓钢轨接头处轮轨间的冲击作用,改善临时轨道结构的受力和变形。基于多体动力学理论,以21 t轴重平车为研究对象,建立车辆-钢轨接头耦合动力学模型,研究钢轨接头区轮轨动力响应,分析道床刚度对轮轨冲击的影响规律。结果表明:钢轨接头区的轮轨冲击较为显著,其轮轨垂向力比非接头区增大约1.4倍。随着道床刚度增加,轮轨垂向力呈非线性增加趋势,钢轨和轨枕的垂向加速度和垂向位移均呈减小趋势,道床刚度为170 kN/mm时,轮重减载率最大值为0.63,接近我国规范的允许限值0.65;道床刚度小于45 kN/mm时,钢轨和轨枕的位移均超出了我国规范允许值(2.5 mm和2.0 mm)。因此,施工阶段应对道砟进行合理的捣固,宜将道床刚度控制在45~170 kN/mm。  相似文献   

18.
根据弹性地基梁板理论,运用有限元方法,建立了合成轨枕式无砟轨道"梁-梁-板"计算模型.运用所建立的有限元模型分析了扣件刚度、树脂砂浆刚度等参数对轨道结构垂向受力特性的影响;分析得出,扣件刚度取动刚度50 kN/mm进行设计是合适的;树脂砂浆的弹性模量宜在200~300 MPa间取值.  相似文献   

19.
研究目的:减振扣件与弹性道床垫组合减振轨道的特点是在钢轨下和道床下同时设置减振层,轨道板厚度、扣件刚度、弹性道床垫刚度是影响列车运行品质和组合减振轨道减振性能的关键动力学参数。本文采用三维车辆-轨道耦合动力学计算模型,研究组合减振轨道关键动力学参数变化对车辆系统、轨道系统动力学性能及减振性能的影响规律。研究结论:(1)轨道板质量对各动力学指标的影响相对较小,轨道板的设计应以轨道基础预留空间和板自身的强度、耐久性要求作为控制指标;(2)与弹性道床垫配合使用的减振扣件系统的垂向刚度应大于15 k N/mm;(3)轨道板下垫层刚度取值应大于13 k N/mm3;(4)设计中宜适当提高扣件刚度,当弹性道床垫老化失去部分弹性功能后,可通过提高扣件弹性使其减振性能长期满足环保要求;(5)综合上述规律,提出了减振性能可达12 d B的扣件与弹性道床垫组合减振轨道的关键动力学参数取值方案,可为组合减振轨道的设计提供理论支持。  相似文献   

20.
基于现场锤击试验的地铁轨道振动特性分析及参数研究   总被引:3,自引:3,他引:0  
近来,由于轮轨共振而产生的地铁钢轨异常波磨问题备受关注。轨道结构动力特性分析是开展轮轨耦合振动研究的基础,地铁轨道结构的动力特性取决于各组成部分(钢轨、扣件、轨枕和道床等)的物理特性及其组合形式。基于轨道结构的周期性频域解析模型,结合北京地铁在线锤击试验,通过计算轨道结构在脉冲荷载下的频响函数,对0~2000Hz频段内轨道结构的动力响应主频进行分析;并通过改变轨道结构参数,分别研究了不同轨道结构参数对各轨道结构动力响应主频的影响情况。研究结果表明:轨下支撑刚度对钢轨共振频率影响较大,枕下支撑刚度对轨道系统共振频率影响较大,轨下和枕下支撑阻尼仅能改变各共振频率点的响应幅值;轨枕支撑间距对pinned-pinned共振频率影响较大,对其他共振频率点的影响较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号