首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以新建沪昆高铁上跨武广客专某槽型断面独塔转体施工斜拉桥为工程实例,分别采用Midas/Civil和Ansys有限元程序建立整体和局部分析模型,模拟分析塔梁墩固结区应力的分布特征;探讨应力集中点附近区域的应力分布情况,明确其影响范围;沿指定路径追踪截面上的应力,揭示其分布规律。研究结果表明:槽型梁底板上下缘拉应力较大,需局部加强;塔柱边边缘、塔梁相交处及固结区内部孔洞附近存在应力集中现象,应适当设置圆倒角;最大压应力点附近区域应力迅速衰减,影响范围较小,最大拉应力点附近区域一定范围内存在较大的拉应力。  相似文献   

2.
为了解高速铁路槽形连续梁拱桥拱梁固结段的真实应力状态及验证局部分析中边界条件表达的准确性,以济青高速铁路(66.5+142+66.5) m双线有砟轨道预应力混凝土连续槽形梁拱桥为工程背景,利用FEA有限元软件建立细化的空间实体有限元模型,分析中支点横截面空间效应,并对局部模型的边界条件模拟的正确性进行验证。分析表明:中支点截面应力呈现明显的空间不规律现象,恒载比活载剪力滞效应更为明显,局部位置如拱肋与主梁连接部位、主梁下缘支座处、横隔板进人孔倒角处应力集中,应适当加强配筋,其余部位应力均满足要求,通过验证局部模型的内力分布,确保实体模型应力结果的准确性,保证结构安全。  相似文献   

3.
针对斜拉桥中双箱式主梁,采用三维有限元分析方法,建立具有不同斜腹板厚度(18 cm,24 cm,30 cm,35 cm,40 cm)的5个箱形主梁有限元模型,分析其空间应力分布特点,归纳出斜拉桥中此类双箱单室倒梯形截面的薄弱环节及斜拉桥箱梁在不同斜腹板厚度下的应力变化。考虑到梁段以外附近区域的作用,在其两端截面上施加由平面杆系结构分析所得的端面内力,另外,索力和预加力(梁纵向、横隔梁横向、斜腹板竖向)也施加在相应的位置,分析了不同工况下箱形主梁在自重、索力和预应力作用下的空间应力效应。通过对以上工况计算结果的静力分析,归纳出斜拉桥中此类双箱式截面的应力分布特点,并提出斜腹板厚度的合理化建议。分析表明:斜腹板厚度为30 cm左右时,主梁的应力分布比较合理。  相似文献   

4.
以蒙华重载铁路主跨248 m部分斜拉桥为例,采用有限元分析理论,分析在该跨度范围内部分斜拉桥应用于重载铁路的适应性及特殊性。对该桥结构体系、主梁梁高、预应力次内力、桥塔刚度、桥塔高度及索塔梁刚度匹配等结构参数进行比选研究,确定合理布置形式。结果表明:(1)该重载铁路部分斜拉桥采用塔梁固结、墩梁分离体系,主墩支座采用双1 90 000 kN超大吨位球形钢支座;(2)主梁中支点—跨中梁高采用13 m-6 m组合为优;(3)短预应力钢束时弯矩近似矩形分布于预应力钢束布置区域,次内力较小;长预应力钢束次内力弯矩近似呈三角形分布,次内力影响明显;(4)桥塔尺寸主要由索鞍等构造及桥塔本身受力控制,其刚度对结构整体受力及刚度影响均较小;(5)为提高跨中截面等控制性区域结构受力性能,桥塔采用高塔型体系,高跨比1/4.35;(6)结构整体刚度主要由主梁提供约占67%,主塔及拉索对整体刚度贡献值为33%,主塔及拉索对刚度影响因素主要为桥塔高度。  相似文献   

5.
利用三维有限元分析方法,建立具有不同直腹板厚度(25、30、35、40、45 cm)的5个箱形主梁有限元模型,分析其空间应力分布特点,归纳出斜拉桥中此类双箱单室倒梯形截面的薄弱环节及斜拉桥箱梁在不同直腹板厚度下的应力变化.考虑到梁段以外附近区域的作用,在其两端截面上施加由平面杆系结构分析所得的端面内力,另外,索力和预加力(梁纵向、横隔梁横向、斜腹板竖向)也施加在相应的位置,分析不同工况下箱形主梁在施工荷载、自重、索力和预应力作用下的空间应力效应.通过对以上工况计算结果的静力分析,归纳出斜拉桥中此类双箱式截面的应力分布特点,并给出直腹板厚度的合理化建议.分析表明,直腹板厚度为40 cm左右时,主梁的应力分布比较合理.  相似文献   

6.
研究目的:连续梁拱组合体系桥拱肋与主梁固结,依靠主梁内配置的预应力束来平衡拱的水平推力,拱脚是拱梁组合桥的关键部位,其受力性能对全桥承载能力和跨越能力至关重要;拱脚为钢管混凝土拱肋向混凝土主梁的过渡段,局部构造非常复杂,为了给拱脚节点处的构造设计提供理论依据和合理方案,有必要在桥梁整体分析的基础上,建立拱梁结合部精细化有限元计算模型,精确分析其受力状态和传力机理。研究结论:(1)拱梁结合部主梁和拱脚混凝土、拱肋钢管和拱肋内灌注混凝土等构件应力均在规范给定的限值内,结构安全可靠;(2)拱梁结合部应力集中区域主要分布在0号和1号节段连接截面,该处拱脚和主梁均存在较大的主压应力;拱脚与主梁间宜采用圆弧过渡等平滑连接构造,以减小应力集中,使混凝土受力更为均匀;(3)应确保拱肋与主梁、拱肋与拱脚混凝土之间共同作用良好,并保证拱梁结合部位受力的整体性;(4)本研究结果可供大跨度连续梁拱桥的设计和施工参考。  相似文献   

7.
广州一座高架桥预应力混凝土简支T梁跨中区域腹板上部近承托处存在纵向裂缝,且局部开裂伴有碎边现象。本文建立了有限元模型对腹板开裂病害原因进行分析,并提出了增大腹板截面、增设预应力碳板和跨中横隔梁的加固设计方案。结果表明:原桥在不考虑桥面铺装参与结构受力的条件下,车辆荷载局部轮载将会使得T梁跨中区域腹板顶部出现较大的竖向拉应力,与纵向裂缝的位置较为一致;加固后,T梁承载能力富余度增加,梁体下缘拉应力得到明显改善;同时T梁腹板局部承载能力及裂缝宽度均满足规范要求。  相似文献   

8.
杭州湾大桥梁上运梁过程仿真分析   总被引:2,自引:0,他引:2  
对杭州湾大桥非通航孔滩涂区的50 m箱梁上运梁过程进行空间仿真分析。按照实际工况荷载,考虑预应力空间效应,施加等效节点力,并合理考虑支座等细部建模,建立精密的三维实体有限元仿真模型。混凝土的材料特性按现行公路桥梁设计规范取值,考虑最不利计算荷载,支座底部按刚性单元模拟,而与梁相接触层的弹性模量满足梁端回转变形时不出现拉应力,在结构离散时尽可能细分单元网格,由于梁端的应力相对复杂,采用比跨中更密的单元网格。计算承重箱梁整体变形和空间应力分布特性,结果为,由于载荷位置在支座附近,变形相对较小,最大挠度在反拱位移之内。支座截面的最大主拉应力发生在底板上表面侧,超过混凝土的开裂强度,因此,对该区域的混凝土应采取加劲处理,以防止混凝土拉裂;最大主压应力发生在架桥机肢腿处附近,小于混凝土的抗压强度。  相似文献   

9.
在顶推施工过程中,由于滑道高程控制不精确、施工管理不当等因素会导致支座脱空,从而导致支反力的重分布,某些支座支反力必然增加,在支撑位置附近局部应力会比较突出,所以有必要研究支座脱空对混凝土箱梁受力性能的影响。结合某预应力混凝土连续箱梁桥顶推施工实例,通过建立三维有限元实体模型,选取某工况下的支座发生脱空进行分析。计算结果表明:支座脱空对支座支反力及箱梁的局部应力影响比较大,减小了顶板受拉和底板的受压安全储备,梁体下挠位移增大,增加了摩阻力,应在施工过程中严密监控支座,避免发生支座脱空。  相似文献   

10.
采用外部粘贴预应力碳纤维板技术对金刚桥进行加固。金刚桥是一座已使用40多年的钢筋混凝土简支T形梁桥,开裂严重,抗弯刚度退化,在汽车荷载作用下梁体挠曲变形明显,需要进行加固并提高其通行荷载。根据正截面承载力验算结果,确定在主梁底部和梁肋两侧尽可能接近底部的位置粘贴预应力碳纤维板进行加固,以提高抗弯强度。加固过程中采用结构基座式的预应力张拉设备对碳纤维板施加1 000 MPa的初始应力,并在桥梁支座处通过永久性锚具设置了可靠的锚固。加固完成后采用标准荷载对桥梁进行荷载试验。试验结果表明:应用预应力碳纤维板加固技术,桥梁结构承载力满足加固设计荷载要求,且挠曲变形显著减小,桥梁结构的内力分布得到明显改善。  相似文献   

11.
大跨度复杂结构桥梁施工全过程结构空间受力特性研究   总被引:3,自引:2,他引:1  
研究目的:通过建立施工全过程时效和路效分析的三维非线性模型,对大跨度V形连续刚构拱组合结构桥的施工全过程空间受力特性进行研究,解决以往的桥梁设计和施工监控采用的计算方法不能有效分析混凝土箱梁的剪力滞、扭转和畸变等引起的截面应力分布不均匀问题。研究结论:分析了大跨度V形连续刚构拱组合结构桥施工全过程主梁截面顶板纵向正应力、横向压应力、腹板剪应力等截面空间应力分布和变化规律,其表现在:主梁截面顶板纵向正应力沿横向分布呈显著的不均匀性,剪力滞效应明显,与初等梁理论的预测值相异;主梁横向压应力普遍不大,且顶板应力分布不均匀程度大于底板;单箱双室截面梁三腹板剪应力分布连续变化,且中腹板的剪应力略大于边腹板剪应力,整体具有较好的规律性;施工全过程主梁纵向正应力包络线体现了最大拉应力和最大压应力的施工工况,为施工控制提供了理论基础。  相似文献   

12.
独塔单索面斜拉桥空间应力状态分析   总被引:3,自引:0,他引:3  
现代斜拉桥多采用密索体系,属高次超静定结构,且箱 形的主梁结构空间效应明显,单纯地由平面分析很难反应桥梁 的实际受力状况。以一独塔单索面斜拉桥为背景,采用新型空 间单元———实体退化单元,考虑三向预应力效应,对其成桥状 态下的纵、横、竖向的正应力状况进行了分析。分析结果表明, 该桥在恒载下,主梁顺桥向正应力沿横向分布相当不均匀,翼 板上的顺桥向正应力明显小于主梁中间部分的正应力;塔梁相 交处主梁的横桥向拉应力偏大。空间分析结果为完善设计提 供了依据,确保了桥梁在设计上的安全。  相似文献   

13.
高铁槽形梁斜拉桥塔梁固接结构试验研究及数值分析   总被引:1,自引:0,他引:1  
以沪昆高铁某独塔斜拉桥为研究对象,模型试验与数值模拟相结合,研究槽形截面斜拉桥的塔梁固接结构模型的试验方法、受力状态、极限承载能力以及传力机理等。研究表明:运营阶段荷载作用下,斜拉桥塔梁固接区的应力水平较低,纵向和竖向正应力在6.5 MPa以内,塔梁结合部具有较强的安全储备;在梁体抗弯强度极限荷载下,靠近固接区主跨侧槽形梁断面最先破坏,固接区截面抗弯强度大于主梁断面;槽形截面边箱梁和桥面板传力特征在主梁和塔梁固接区基本一致,边箱梁为主要受力构件;较之于塔梁固接区,主梁内的桥面板剪力滞效应更为明显。  相似文献   

14.
城市轨道交通U型梁车桥动力响应分析   总被引:3,自引:0,他引:3  
运用车桥耦合振动理论分析了城市轨道交通高架桥U型梁车桥振动响应。计算分析了不同编组列车和车速下,U梁位移动力系数、总体应力动力系数、道床板局部应力动力系数、道床板横向应力的空间分布特点及列车过桥的平稳性。计算结果显示,位移动力系数随车速增大而增大,但数值较小;应力动力系数大于位移动力系数,空重混编计算结果较大,其他编组差异很小,随车速变化无明显规律;道床板局部应力动力系数呈梁端大、跨中小,与腹板相交处大、道床板中心处小的分布规律;梁端道床板与腹板相交处横向负弯矩变化率较大,且幅值较大,易发生疲劳损伤而顶面开裂。分析结果表明,不能用位移动力系数定义U梁应力动力系数,建议采用总体和局部应力动力系数进行承载力设计。分析比较各舒适度评判标准,建议用ISO2631标准评价城市轨道交通旅客乘坐舒适度。  相似文献   

15.
大跨度预应力混凝土T构墩梁结合区域结构构造、预应力钢束布置和应力分布都比较复杂,是T构桥的关键部位。结合某客运专线70 m跨度的预应力混凝土T构的设计方案,利用有限元分析软件ANSYS对墩梁固结部位进行精细的有限元局部应力分析,得到施工阶段及运营阶段墩梁固结区的应力分布规律,以便指导工程的设计和施工。结果表明,该结构预应力配束合理,施工阶段及运营阶段应力均满足设计规范要求。  相似文献   

16.
结合昌景黄高铁(90+200+90)m连续刚构拱桥施工图设计,对主梁、拱肋、吊杆、桥墩等主要构件的设计过程进行分析研究。采用有限元软件MIDAS/Civil建立计算模型,对3种梁高及4种底板厚方案进行比选,从满足主力工况最小强度安全系数及主梁受压区高度不超限等方面考虑,确定主梁中支点处梁高11.5 m,底板厚1.5 m;对3种拱肋截面尺寸方案进行比选,从满足拱肋强度、稳定性要求及经济性等方面考虑,拱肋截面高采用3.3 m较为合理;结合本桥纵、横、竖三向预应力布置工作,总结大跨度预应力混凝土连续刚构拱桥的预应力钢束布置特点;拱脚附近拱肋混凝土局部拉应力超限,通过局部布置纵向钢筋进行解决。计算结果表明,主梁、拱肋、吊杆、桥墩等构件的强度、应力、变形及稳定性等各项指标均满足相关规范要求。  相似文献   

17.
斜拉桥外倾H型塔柱与钢板组合主梁在塔梁结合处采用固结式连接,是一种构造较为复杂的斜拉桥塔梁连接形式。本文以芜黄高速徽水河大桥为依托,利用有限元分析和BIM模型分析方法,从受力需求和施工便利性角度对塔梁结合段的合理构造进行研究。结果表明,钢板组合主梁在塔梁结合段位置存在刚度突变,应在靠近结合面位置合理设置过渡加劲以实现应力平顺过渡,优化后的结合段局部受力状态良好;采用BIM技术准确模拟结合段范围内钢构件、钢筋、预应力空间位置,以主受力钢筋和钢构件保持连通为原则,精准确定钢梁开孔位置,保障了开孔质量与精度,解决了结合段钢结构及钢筋安装难题,最后提出合理的塔梁结合段构造形式。  相似文献   

18.
根据预应力混凝土连续梁拱组合桥的结构特点,充分考虑主梁的承载能力,提出基于指定截面应力法的吊杆成桥索力分步算法。根据主梁截面的应力控制条件,以总的吊杆索力最小为目标函数,采用数学规划方法初定吊杆索力,然后采用最小二乘法进行吊杆索力调匀,从而得到较为合理的吊杆成桥索力。应用该方法对宿淮铁路京杭运河特大桥主桥(62+132+62)m连续梁拱组合结构进行吊杆成桥索力分析,研究主梁截面尺寸、施工方法等对吊杆成桥索力、主梁预应力布置的影响。结果表明:随着梁高的增大,主梁参与全桥受力的程度随之增大,吊杆索力减小,拱肋负担的荷载也减小;施工方法不同,吊杆成桥索力和主梁内的预应力布置也不同,当主梁由悬臂浇注法改为支架现浇法施工时,吊杆的成桥索力增大,主梁在中支点截面处需配置的预应力钢绞线数量减小,在中跨跨中截面处需配置的预应力钢绞线数量增大。  相似文献   

19.
结合高速铁路主跨332 m高低塔混合梁斜拉桥的设计方案,建立空间有限元模型,针对高低塔混合梁斜拉桥的结构特点和适用条件,对结构体系、主梁形式、主梁高度、主塔高度、斜拉索索距、合理边中跨比、辅助墩的设置等进行了研究,并分析不同的设计方案对高低塔混合梁斜拉桥力学行为的影响,从而确定最优方案。研究结果表明:主桥孔跨布置采用(51+135+332+62+51)m合理可行,采用纵向固定约束体系时固定支座宜设置左低塔处,主梁高度为45 m;高低塔宜采用尾索角度29°,30°对应的塔高。  相似文献   

20.
对高速铁路CRTSⅡ型板式无砟轨道端刺桥梁结构的刚构斜腿与主梁的墩梁固结部位,建立空间有限元模型,进行局部应力分析,得出桥梁结构的受力特征,并对斜腿构造特别是墩梁相交处倒角尺寸进行了优化,使结构受力更合理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号