首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 468 毫秒
1.
达成高速铁路岩溶隧道围岩稳定性分析   总被引:1,自引:0,他引:1  
结合达(州)成(都)高速铁路某岩溶隧道工程,建立岩溶隧道三维实体模型,利用三维快速拉格朗日法FLAC3D对隧道底部含有溶洞的围岩稳定性进行数值模拟研究,并将数值计算结果与现场监测结果进行比较分析.研究结果表明随着隧道施工接近并通过溶洞顶部,隧道拱顶处围岩向下变形,其值不断增大,拱腰处围岩沿隧道径向收敛,其值变化较小;仰拱处围岩最初向上变形,在隧道施工到溶洞顶部时变为向下变形,且其下沉值不断增大;围岩塑性区主要集中在隧道拱顶、仰拱底、拱腰和溶洞顶部处,溶洞顶部与隧道底部的塑性区有相互连通的趋势;隧道拱顶左右各约45°的范围、隧道底部以及溶洞周围的部位为应力释放区,拱腰处为应力增高区.  相似文献   

2.
基于流固耦合理论下穿库区隧道围岩稳定性分析   总被引:1,自引:0,他引:1  
以某下穿库区铁路隧道为依托工程,对比分析有无渗流场作用和不同水深条件下,隧道结构应力变化规律以及围岩变形、塑性区和渗流场的变化特性,同时还考虑隧道加固圈厚度和渗透系数对围岩稳定性的影响。研究结果表明:地下水渗流场对围岩变形影响较大,不仅能引起大范围的库底沉降,而且能增大隧道拱顶和拱腰的位移,并且能够减小仰拱的隆起量以及加剧围岩塑性区的范围;隧道的开挖能够对地下水孔隙水压力的分布形成明显的扰动,并且在两拱脚处渗流速度最大,最大塑性区位于横向临时支撑处;注浆加固圈能够改善围岩的受力,隧道最优注浆圈厚度在5m,并且当渗透系数小于围岩渗透系数的1/50时注浆圈加固效果不再明显。  相似文献   

3.
研究目的:全风化红砂岩和砂质黄土互层地层在我国有较广泛的分布,其敏感脆弱的工程地质特性严重影响隧道工程建设。本文以蒙华铁路阳城隧道为依托工程进行拓展性研究,采用室内试验、数值模拟、现场监测等多种方式深入探讨岩层倾角对土砂互层地层隧道围岩稳定性的影响。研究结论:(1)随着岩层倾角增大,拱顶及左、右拱腰位移呈现互异的变化规律,且具有不同的变形机理;对于拱顶而言,45°为破坏模式转换临界,位移取得最小值43. 7 mm;根据左、右拱腰变形差异性,分为非对称变形缓慢发展区、非对称变形快速发展区、非对称变形稳定区、非对称变形弱化区和非对称变形二次发展区五个阶段;(2)拱顶及左、右拱肩处支护结构在不同地层倾角下均有较大主应力,且波动幅度较大,左、右拱肩处应力差值的变化对隧道结构会产生不同程度的影响,当倾角为60°时,两处主应力差值取得最大值1. 01 MPa;(3)随着岩层倾角变化,张拉塑性区和剪切塑性区存在不同的分布规律,实际工程中应做好相应抑变措施;(4)本研究结论可为不同岩层倾角产状下的土砂互层地区的隧道设计和施工提供借鉴。  相似文献   

4.
红黏土隧道围岩含水率变化及变形特征分析   总被引:1,自引:0,他引:1  
银西高速铁路庆阳隧道洞身主要围岩为红黏土。本文通过现场监测,对庆阳隧道从初期支护开始近2个月内围岩含水率、钢拱架应力及围岩变形的变化规律进行分析。结果表明:红黏土隧道围岩含水率、钢拱架应力和围岩变形先增大而后趋于稳定;含水率和钢拱架应力的增长波动期一般为2~4周,围岩变形增长期一般为2周;含水率趋于稳定后拱顶和拱腰处围岩含水率明显小于拱脚和仰拱处;增长期围岩变形线性增大,变形基本稳定后拱顶沉降大于水平收敛;钢拱架承受围岩压力,对确保红黏土隧道围岩的稳定起着重要作用。  相似文献   

5.
为解决浅埋偏压隧道开挖施工过程中极易出现地表、拱顶沉降过大等问题,依托南宁至崇左铁路NCZQ1标笔架岭一号隧道和黄牛岭一号隧道,利用MIDAS/GTS NX有限元软件对拱上明作拱下暗挖隧道施工力学行为进行研究。通过对隧道关键节点进行位移分析,发现明显非对称变形现象:埋深较大的左侧拱肩、拱脚和边坡坡底相较于右侧相同位置位移偏大19.57%、8.82%和23.39%;应力方面,从设置、不设置边坡锚杆两个工况对1D(锚杆)、2D(喷混结构)、3D(围岩)单元进行应力分析,以证明设置边坡锚杆的必要性;数值模拟结果显示临时边坡陡峭处和护拱两侧上方土体有较大塑性应变区,施工过程需重点关注。  相似文献   

6.
结合某岩溶隧道施工过程,利用有限差分软件对顶部存在水压充填溶洞的某隧道围岩稳定性进行数值模拟研究,并将数值计算结果与现场监测结果进行比较分析。结果表明:围岩塑性区主要集中在隧道拱顶、仰拱底、拱腰和溶洞顶部处,溶洞顶部与隧道底部的塑性区有相互连通的趋势。随着隧道接近并通过充水溶洞,拱顶和墙脚两处围岩最大主应力先减小后增大,拱肩处一直增大,拱腰和仰拱底处先增大后减小,主应力最大值位于拱肩区域,其值约为3.0 MPa。  相似文献   

7.
以吉图珲高铁富岩1号隧道为工程实例,运用有限元分析方法对不同开挖循环进尺下的隧道两台阶法进行数值模拟,对比分析不同工况下隧道变形和应力的响应规律,得出工程适用的开挖循环进尺。研究结果表明:开挖进尺对围岩变形影响较大,两者呈线性正相关关系;在Ⅳ级较差围岩条件下,拱顶受拉破坏先于拱腰和掌子面的受剪破坏,拱顶掌子面后方1 m处第一主应力达到最大值;随着开挖进尺的增大,拱顶第一主应力和拱腰、掌子面处D-P值均增大,隧道更易发生破坏;Ⅳ级较差围岩,开挖进尺建议取2.0 m,Ⅳ级偏好围岩开挖进尺可增大至4 m。  相似文献   

8.
隧道开挖时,由于地质条件的不确定性和复杂性,导致支护结构受力状态发生变化,因此掌握支护结构应力分布规律对于隧道工程安全施工具有十分重大的意义。以下穿渝湘高速公路的凤咀江铁路隧道为背景,利用数值模拟和实际监测研究不同围岩和不同拱架间距下隧道初期支护钢拱架的应力分布规律,研究表明:(1)Ⅴ级偏差围岩最大拱架间距取0.8m,Ⅴ级偏好围岩最大拱架间距可增大至1.0m;(2)从应力分布角度看,钢拱架内外侧应力大部分为拉应力,且钢拱架最大拉应力出现在拱脚处,最大压应力在拱顶处;(3)当围岩质量状况变差时,钢拱架应力和应力梯度会迅速增大,钢拱架受力不均匀性也会显著增加;(4)在Ⅴ级偏差围岩条件下,当增大拱架间距时,钢拱架应力会迅速增加,因此要严格控制好拱架间距。  相似文献   

9.
以大同—准格尔铁路言正子2#隧道为工程背景,运用数值计算方法对冻融循环作用下隧道围岩的稳定性进行了分析。结果表明:言正子2#隧道病害主要由冻融损伤造成,病害类型主要为拱顶开裂和边墙剥落;隧道围岩最大水平位移、最大垂直位移和最大主应力均随冻融循环次数的增加而增大;隧道围岩最大水平位移出现在边墙,最大垂直位移出现在底板中心,最大主应力出现在拱脚,故边墙、底板中心和拱脚易产生混凝土开裂、剥落等病害;经历不同冻融次数后隧道围岩均未出现拉应力,表明衬砌有效地控制了围岩变形。  相似文献   

10.
青岛地铁近距交叠隧道施工稳定性研究   总被引:2,自引:2,他引:0  
为研究近距交叠隧道施工稳定性,以青岛地铁2号线枣山路—李村站区间隧道下穿3号线万年泉—李村站区间隧道为背景,通过数值模拟结合实测数据,分析交叠区地表变形、危险截面应力、变形规律及塑性区分布特点,由此可知:下穿施工后,地表变形从3.10 mm增至6.345 mm,由3号线沿线向交叠区中心延伸;当距交叠区中心超过40m时,地表变形影响可以忽略。交叠区截面受扰动影响最大,左右拱脚应力变化最明显,变化量为60、120k Pa,最大拉压应力分别为20 k Pa、2.1 MPa,小于衬砌所用混凝土抗拉抗压强度。另外,3号线最大变形位于交叠区隧道拱顶,2号线最大变形位于中夹岩拱顶,分别为11.77、9.85 mm;3号线拱底、2号线拱顶在交叠区产生变形突变,分别为5.67、8.64 mm,均在可接受范围内,并结合实测数据验证了数据分析的可靠性;2号线塑性区分布较大,上下隧道间岩柱基本处于完全塑性状态,拱脚及拱顶处塑性区分布最广,但左右线开挖塑性区并未贯通,塑性区半径控制在2.0 m之内,保证了施工的稳定。  相似文献   

11.
风积沙作为一种抗剪能力弱、黏聚力低、自稳能力差的土体,隧道开挖时围岩变形难以控制,研究风积沙隧道的围岩变形特征及其适用的施工工法则显得尤为重要。依托蒙华铁路王家湾隧道穿越风积沙段,通过室内试验得到相关参数,采用有限差分法进行数值模拟,对比分析有无水平旋喷桩加固两种工况的围岩变形和塑性区发展,从而得出三台阶法、三台阶临时仰拱法、三台阶七步法、CD法以及双侧壁导坑法5种工法的变形特征和水平旋喷桩的加固效果。研究结果表明,(1)在无水平旋喷桩加固围岩的情况下,双侧壁导坑法最适用于大断面深埋风积沙隧道,但其控制效果仍然不能满足变形要求;(2)采用水平旋喷桩加固后,三台阶加临时仰拱法最适合于大断面深埋风积沙隧道;(3)水平旋喷桩与三台阶加临时仰拱法结合能够有效控制围岩变形;(4)水平旋喷桩能够显著控制上半部分围岩变形大小,并减缓全环围岩变形速率,但对下半部分围岩变形大小控制不明显。  相似文献   

12.
为保证地铁双线盾构隧道下穿桩箱基础建筑的安全,采用abaqus有限元软件建立计算模型,模拟不同桩长、桩径、土体损失率及不同工况下桩基和基础底板附加变形及附加内力变化规律,从而对隧道下穿桩箱基础建筑的设计提供借鉴作用。结果表明:(1)随桩长增加,底板竖向附加变形和附加弯矩逐渐变小,底板竖向附加弯矩在桩顶出现极大值;3号基桩(右线隧道左侧)随桩长增加,桩身最大水平位移、附加弯矩和附加轴力均逐渐减小。(2)随桩径增大,底板竖向附加变形逐渐减小,3号基桩附加弯矩逐渐增大。(3)随土体损失率增大,底板竖向附加变形逐渐变大,3号基桩附加弯矩逐渐变大。(4)施工完毕后,除4号桩(两隧道之间)外,其余各桩水平变形规律为靠近隧道的两排桩累积变形最大,离隧道越远,桩体变形越小,4号桩体最终附加水平变形倾向于先期开挖的左线隧道。  相似文献   

13.
挤压性围岩隧道大变形问题是近年来困扰隧道建设者的突出难题之一。以丽香铁路长坪隧道为工程依托,采用数值计算与现场测试相结合的方法,研究了挤压性围岩单线铁路隧道受力变形分布规律,并应用于工程实践。主要研究结论为:(1)单线隧道受洞室形状影响,变形以水平方向为主,围岩压力以垂直方向为主;(2)支护结构均以受压为主,拱腰和墙脚是易产生应力集中的薄弱环节,实测锚杆多受拉,墙中锚杆轴力远大于拱部及墙脚锚杆;(3)实测受力变形分布规律与计算结果基本一致;(4)工程实践中通过采取断面曲率优化、加长边墙系统锚杆、两台阶法开挖、高效锚杆钻机等措施,有效控制了围岩变形,隧道结构安全稳定。  相似文献   

14.
针对客运专线在软土和松软土地基处理中大规模采用高强度桩复合地基技术的应用情况,进行路堤荷载作用下不同桩间距的离心模型试验,分析桩间距的变化对高强度桩复合地基的荷载传递、破坏特点、桩土应力及垫层拉筋受力、地基沉降变形等工程特性的影响.试验数据表明:桩间距由3倍增至6倍桩径,高强度桩复合地基的沉降变形、桩土应力及比值、垫层拉筋受力等力学响应增大明显;随着桩间距的加大,高强度桩复合地基的桩顶和桩间土承受的应力均大幅提高,桩间距大于或等于5倍桩径后,桩顶垫层和桩间土先后达到极限状态,将产生显著的桩顶刺入变形和桩间土横向挤出变形,复合地基整体结构处于不稳定状态;垫层拉筋的受力沿横截面呈M形分布,峰值出现在两侧路肩附近位置的下方,与地基发生变形破坏的位置有较好的一致性.  相似文献   

15.
以西安地铁1号线矿山法区间下穿太平河桥工程为背景,运用有限元方法分析研究基于双层永久衬砌结构的桩基托换体系的施工力学行为,并论证超前注浆预加固地层的效果。研究结果表明:基于双层永久衬砌结构的桥梁桩基托换体系安全可靠、环境影响小,可为后续类似桩基托换提供宝贵的借鉴和参考;桥桩托换段桩基出露施工环节对桥跨结构的沉降变形影响较大,是衬砌结构洞内托换群桩基础的关键工序,故施工过程中应予以重点关注;基于双层永久衬砌结构的桥梁桩基托换体系在完成承载体系的有效转换后托拱结构节点处产生明显的应力集中现象,因此应适当加厚桩基托换节点处结构厚度并增加配筋量以满足结构安全要求;桩基托换施工过程中桩基开挖暴露长度愈短,托换体系施工引起的桥跨结构沉降变形及桩基托换节点区域主应力值愈小;洞内预注浆加固能够显著降低桥跨结构沉降变形及托拱结构受力,从而确保隧道修建时桥梁结构的安全性。  相似文献   

16.
济南地铁某土压平衡盾构区间隧道处于上部为可塑黏土、下部为碎石土的富水地层中,且近距离侧穿底部净空较小的铁路客专桥桩。施工中,在桥桩与隧道间设置钻孔灌注隔离桩进行隔离防护,隔离桩顶部施工钢筋混凝土连梁以提高灌注桩抵抗变形的能力;选用护壁性能好、低高度的正循环钻成孔,钢筋笼分段制作、吊装,机械连接下井后及时灌注混凝土;采用微过土压平衡掘进模式,并进行足量同步注浆、及时二次补充注浆,可有效控制地面沉降,满足铁路客专及桥梁的各项控制指标要求。  相似文献   

17.
杭甬高铁宁波特大桥桥墩由于临近场地大量弃土堆载而发生线路横向偏移,本文通过线弹性地基反力法和数值分析方法对该桥墩基础的受力和变形进行了计算分析,比较了两种计算方法所得结果的差异,评估了基桩的长期使用性能。在此基础上,采用数值分析方法对土方卸载和高压旋喷桩联合加固条件下基桩的受力和变形进行了模拟分析,并通过纠偏后的桥墩实测位移分析了纠偏加固效果。  相似文献   

18.
以济南地铁R1线地下段盾构近穿某建筑物为背景,采用数值分析的方法对隔离桩不同参数进行逐一模拟。研究了隔离桩不同桩长、桩洞距及桩间距对建筑物基础位移控制的影响。研究表明,桩长越长,隔离效果越好;在一定范围内,桩洞距越小隔离效果越好;由于桩间土拱效应,桩间距减小至一定程度后,隔离效果改善不明显。经优化选取桩长为30 m、桩洞距为2.0 m、桩间距为1.2 m的隔离桩。相比未打设隔离桩的情况,优化取值的隔离桩后,建筑物基础水平位移可减小36.6%,竖向位移可减小33.1%。  相似文献   

19.
因隧道洞口所在坡体产生滑坡,导致隧道洞口附近衬砌发生变形破坏。为控制隧道衬砌变形破坏,采取增加型钢,加强隧道衬砌的补救措施。但在滑坡推力作用下,型钢发生不同程度的变形破坏,故此,单独加固隧道衬砌并不能有效控制隧道变形。拟采用抗滑桩加固隧道所在滑坡体,通过增加抗滑力控制隧道变形。因单桩抗滑能力有限,为保证提供足够的抗滑力,需要加大桩身截面尺寸,增加桩长,甚至增加桩数减小桩间距及增加排数,如此,会增加施工难度,提高工程造价;而通过在桩顶设置连系梁,使各桩联合作业形成整体,可提高抗滑能力。该库岸滑坡坡面与水面交界处成弧形分布,依据坡面地形将抗滑桩按弧形布置,桩顶设置弧形连系梁,并在连系梁两端设置高强度抗力桩限制其端部位移。通过具体工程实例计算分析,比较连系梁刚度对抗滑结构内力分布的影响规律及加固效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号