首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
利用ANSYS软件建立128 m跨铁路应急钢桁梁的非线性有限元模型,研究不同杆件损伤位置、不同损伤长度和不同损伤形式等不同损伤状态下钢桁梁的极限荷载。结果表明:非损伤状态下,钢桁梁因构件屈服发生大变形而失稳破坏,极限荷载系数为2.231,能够保证安全运营;损伤位置对结构极限荷载影响明显,损伤位置越靠近跨中,影响越大;跨中为杆件损伤最不利位置,损伤程度较大时,结构将因杆件局部应力过大而发生强度破坏;随着损伤长度增加,极限荷载呈现先迅速下降、后小幅上升并逐渐趋于稳定的变化趋势,损伤程度越大,损伤长度对极限荷载的影响越明显;损伤形式对极限荷载影响差异较大,杆件的截面损伤和材料屈服强度退化对极限荷载影响显著,而杆件的材料刚度退化的影响可基本忽略。  相似文献   

2.
唐文国  任玉鹏  丁祥 《中国铁路》2024,(2):69-74+86
随着高铁列车运行速度的提高,气动荷载成为隧道结构重要的附加荷载,尤其是素混凝土二次衬砌存在初始缺陷时,气动荷载将对衬砌安全有较大影响。针对素混凝土二次衬砌存在初始裂纹和厚度不足缺陷的情况,分别采用基于断裂力学的数值流形方法和基于荷载-结构模型有限元法,对2种衬砌缺陷在气动荷载作用下的影响开展研究。研究结果表明:隧道素混凝土二次衬砌存在初始缺陷时,气动荷载对缺陷部位的耐久性和长期稳定性有很大影响;隧道衬砌存在裂纹时,在气动荷载作用下,裂纹尖端应力强度因子增大150%以上;衬砌厚度不足时,在气动荷载作用下,缺陷部位拉应力增大54%,衬砌处于“拉-压”循环受力状态。研究结果可为高铁隧道素混凝土结构的长期稳定性及耐久性设计提供参考。  相似文献   

3.
以正在建设的合福铁路合肥南环线经开区铁路钢桁梁柔性拱桥为工程背景,采用大型有限元计算软件ANSYS建立基于梁单元的全桥空间有限元模型,从非线性因素、活载布置形式、初始缺陷和横向风荷载四个方面对铁路钢桁梁柔性拱桥进行参数分析,分别计算在不同参数作用下桥梁的极限承载力,分析各个参数对桥梁极限承载力的影响,确定影响桥梁极限承载力的关键因素。  相似文献   

4.
以主跨430 m的上承式钢管混凝土拱桥为研究对象,建立ANSYS空间有限元模型,对大桥进行非线性稳定性分析,研究了正、反对称偏心对大桥稳定性的影响,并分析了该桥6个关键工况的失稳形态。结果表明,正、反对称初始几何缺陷削弱了结构的刚度,增大了拱桥的初始附加弯矩,但各关键工况下的稳定系数均2,满足相应的规范要求。各工况下结构的失稳形态与自重荷载工况类似,均以面内失稳为主,主要原因是结构自重为主要荷载,其它荷载的作用效应均小于自重引起的荷载效应。初始几何缺陷虽不会改变结构的失稳模态,但会引起荷载的稳定系数变小,应当引起足够重视。  相似文献   

5.
针对中小跨径实腹式老旧石拱桥承载能力评定的问题,可采用平面有限元数值分析方法,此方法宜建立较为符合实际的计算模型。根据实际施工过程,将一期恒载与活载、二期恒载等作用分别建模计算,且考虑填土对车辆荷载的扩散作用,将车辆荷载集中力换算成均布荷载施加于结构中,建立了较为符合实际的计算模型,并从拱上建筑对承载能力的影响和结构缺损造成的受力变化对结果进行修正。结合某中小跨径实腹式石拱桥的详细检测及荷载试验,此种计算模式进行承载能力评定得出的结果与荷载试验测试结果符合较好,可认为此种计算模式较为合理,具有较好的工程实用性,可适用于同类桥梁结构。  相似文献   

6.
研究目的:钢桁梁柔性拱桥具有强大的承载能力及跨越能力,也是大跨度铁路桥梁常用桥型之一,其跨度不断发展。针对铁路钢桁梁柔性拱桥的极限承载力问题,本文同时采用MIDAS及ANSYS两种有限元软件建立一座双主跨360 m的大跨径下承式钢桁梁拱桥的有限元模型,通过对比双主跨满载等三个荷载工况的线弹性承载力分析,并考虑结构几何非线性、几何与材料双重非线性的影响,系统分析大跨度铁路钢桁梁柔性拱桥的极限承载力。研究结论:(1)由线弹性承载力的计算对比分析可知,实际结构在恒载+主跨满载的工况下,结构的受力最不利杆件为拱肋及主桁上弦杆和斜腹杆部分,杆件应力达到屈服时的承载力系数最小为2.06;(2)线弹性极限稳定承载系数介于10.64~12.46,均为拱肋的整体失稳破坏,最不利的荷载工况为恒载+主跨活载,表明桥梁结构的稳定承载力远大于杆件强度承载力;(3)考虑p-Δ效应与整体、局部几何偏位初始缺陷后,计算得到的稳定承载系数依次降低至2.75、2.65,表明几何偏位初始缺陷会显著降低极限稳定承载能力,考虑材料非线性后极限稳定承载力系数进一步降低至2.20;(4)验证了桥梁结构具有良好的稳定承载能力及构件强度承载能力,可为类似桥梁极限承载能力分析提供参考。  相似文献   

7.
实际工程中许多拱结构支承于其他结构之上,下部结构对拱脚的约束并非完全刚性,在这种情况下拱脚约束可以简化为水平和转动弹性约束。采用ANSYS有限元分析软件,在考虑初始缺陷、几何非线性和材料非线性的基础上,针对工字形截面水平和转动弹性支承圆弧钢拱进行了参数化分析。研究了不同荷载工况下水平和转动弹性支承拱的弹塑性极限承载力、极限状态下拱脚的支座位移,对已有的设计公式进行了修正。  相似文献   

8.
采用Ansys建立128 m新型大跨铁路应急钢桁梁的计算模型,系统分析不同工况和非线性因素作用下的结构稳定性,探讨列车荷载、风荷载、温度、初始缺陷、几何非线性和材料非线性等因素对结构稳定性的影响.结果表明:不同荷载组合形式和分布形式下,结构稳定系数和失稳模态不同,主力作用下最低线弹性稳定系数为8.093,失稳形式为局部...  相似文献   

9.
针对复杂工程环境中高地温导致锚杆支护结构锚固性能劣化和结构损伤的现象,研究工作荷载和高温同时作用下对其极限拉拔力的影响。基于力学相似原理设计并制作了3组共9个锚杆试件,通过室内逐级加载拉拔试验,得到试件在不同工作荷载和养护温度作用下,锚杆的极限拉拔力变化规律。研究结果表明:工作荷载越大养护温度越高的试件其裂缝数量最多且宽度最宽;所有锚杆试件的荷载-位移曲线大致相同并且都存在弹性、屈服、塑性强化和拔出破坏4个阶段,曲线呈现三折线特征;当试件的工作荷载一定时,试件的极限拉拔力随养护温度的升高呈现先增高后降低的规律;当试件的养护温度一定时,试件的极限拉拔力随工作荷载的增大而减小。  相似文献   

10.
以一座500 m跨度的四线铁路桥梁为例,采用双单元法建立了有限元模型,分析对比了第一类稳定和第二类稳定的安全系数、失稳模态,探讨了初始缺陷、混凝土强度、拱肋截面含钢率等因素对上承式钢管混凝土拱桥稳定性的影响。研究结果表明:结构稳定安全系数满足规范要求,第二类稳定安全系数为2.15,与第一类稳定安全系数之比为1/5.8;第一、二类稳定安全系数的计算结果趋势相同,包含横向风的荷载组合比包含纵向风的荷载组合更为不利;混凝土强度和截面含钢率对结构稳定性能影响较大,初始缺陷则影响很小。  相似文献   

11.
采用有限元软件ANSYS建立某大跨度钢箱梁式架桥机在浇筑施工状态下弹塑性有限元模型。基于非线性屈曲理论,采用位移控制的弧长法加载跟踪结构平衡路径,对含初始几何缺陷的架桥机结构进行非线性屈曲分析。通过对失稳特征点的荷载—位移曲线分析,确定该型架桥机施工状态下的极限承载力、局部稳定和整体稳定的安全系数。架桥机的极限承载力为3 755t,大于设计施工荷载1 600t,整体稳定安全系数为2.35,但局部稳定安全系数仅为1.32;失稳位置发生在支座以及跨中的底板、横隔板、腹板等处。由非线性屈曲分析结果与特征值屈曲分析结果的对比分析得到:对于复杂结构,由于结构内局部发生屈曲后荷载会发生转移,其结构并未失去整体承载能力,因此由非线性屈曲分析得到的临界载荷可能大于由特征值屈曲分析得到的临界载荷。  相似文献   

12.
嵌岩桩桩端极限承载力研究   总被引:1,自引:1,他引:0  
应用广义非线性统一强度理论和滑移线场方法,基于Meyerhof求解深基础极限承载力方法得出的地基破坏滑移面模式,推导出嵌岩桩桩端极限承载力公式,并对承载力随滑移面倾角及嵌岩比的变化规律进行研究,分析嵌岩比、中主应力系数、过载系数等因素对桩端极限承载力的影响。结果表明:桩端极限承载力系数随着嵌岩比的增加而呈非线性递减趋势,且递减幅度越明显。随着中主应力系数的增大,极限承载力也随之提高。承载力系数在嵌岩比n较小时,随着过载系数hm的增大而增大;当嵌岩比n较大时,则随hm的增大而减小。现行规范所定义的桩端承载系数偏于安全。  相似文献   

13.
针对主跨428 m的广州新光大桥设计方案,采用大型有限元软件ANSYS建立全桥三维有限元模型,分析横撑的数量和位置对弹性稳定和面外极限承载力的影响。结果表明,在端横撑位置确定的情况下,极限承载力随横撑数量增加先增大后降低;在横撑数量相同的情况下,端横撑位置对大跨度钢桁拱的弹性稳定和面外极限承载力影响显著,且端横撑的位置对弹性稳定的影响大于对面外极限承载力的影响。因此,在景观要求允许的情况下,端横撑应尽量向拱脚靠近。  相似文献   

14.
沉井基础竖向承载特性的离心模型试验研究   总被引:1,自引:1,他引:0  
基于离心模型试验对饱和砂土地基中沉井基础在竖向荷载作用下的承载特性进行研究,初步掌握地基极限承载力随基础埋深和基础宽度变化的规律,并对试验结果进行对比分析,结果表明:(1)基础埋深不大于5 m时,荷载-沉降曲线为陡降型,有明显的拐点出现,可取拐点对应的荷载作为极限承载力;基础埋深不小于10 m时,荷载-沉降曲线为缓变型,未出现明显的拐点,建议取相对沉降量(基础的实测沉降量与基础宽度的比值)对应的荷载作为极限承载力。(2)在均质地基环境中,极限承载力随基础相对埋深的增加近似呈指数型曲线增长。(3)进一步推求沉井基础极限承载力随基础宽度和相对埋深变化的函数表达式,其成果可用于估算砂土地基中沉井基础的地基极限承载力。  相似文献   

15.
研究目的:深海吸力式基础的极限承载能力是海洋工程结构设计中的一个关键问题。准确求解吸力锚桩的极限承载力,能够为深海海洋结构物的稳定性提供技术保障;同时,研究深海吸力锚桩极限平衡条件下的失稳机理,可以为进一步深入研究极限承载力奠定理论基础。研究结论:结果表明,本文给出的位移加载模式,能够较为准确地求解水平载荷与竖向载荷共同作用情况下吸力式基础的极限承载力;吸力式锚桩的极限承载力及其稳定性,受水平载荷和竖向载荷的比值以及作用点的位置影响较大。本文工作为工程实际和理论分析提供了技术支持和理论指导。  相似文献   

16.
研究目的:大跨度钢管混凝土拱桥以其特有的自重轻、强度大、抗变形能力强、施工方便和外形美观等优点,被大量地的用于桥梁结构中。本文以一座在建360 m钢管混凝土拱桥为例,采用通用程序ANSYS建立该桥的空间有限元计算模型,分别对该桥进行裸拱状态和考虑拱上建筑共同作用状态下的特征值屈曲稳定性分析、考虑几何和材料双重非线性的极限承载力分析,并对计算结果进行比较分析,给出拱桥极限桥承载力计算的一般性方法。研究结论:(1)考虑拱上结构的特征值屈曲分析结果最小值为13.477,裸拱的特征值屈曲分析结果最小值为6.673,均大于规范要求的4~5,拱肋截面满足面内和面外的稳定性要求;(2)拱桥极限承载力计算结果最小值为2.252,表明在双重非线性及结构初始缺陷的影响下,主力工况下,全桥结构的安全系数为2.252,满足考虑结构的非线性影响弹塑性稳定安全系数不得小于2的要求,结构设计合理;(3)拱上墩柱等拱上结构对全桥的计算刚度有较大的贡献,但对全桥的极限承载力影响较小;(4)特征值屈曲分析结果是非保守的计算结果,在实际结构设计过程中,必须考虑双重非线性及初始缺陷等对结构极限承载力的影响。  相似文献   

17.
格构式拼组结构一般具有较大初始挠度,对结构的受力性能产生不可忽视的影响。线性稳定分析得到的临界荷载普遍较高,其应力水平高于材料的破坏强度极限,因此不宜作为此类结构安全设计的依据。本文对于均布轴向荷载作用下的压杆,考虑初始几何位移的影响,由幂级数法分析得出受力后的变形曲线,并根据边缘纤维屈服准则得到构件的理论最大荷载。对于一般工程构件,此承载力值低于根据线性稳定得到的临界荷载, 可以作为结构安全设计的依据。  相似文献   

18.
在对国内外相关规范关于桥梁抗倾覆稳定性计算方法与脱轨荷载调查分析的基础上,计算了U形梁在保持抗倾覆稳定性下的最大侧向碰撞荷载,对比了欧洲规范EN 1991-1-7:2006和TB 10002-2017《铁路桥涵设计规范》中U形梁的抗倾覆稳定性计算式。基于有限元分析方法对腹板侧向承载力进行仿真分析,明确了U形梁在侧向撞击作用下的失效模式。研究结果表明:2种规范计算得到的最大侧向碰撞荷载有所差异,但均大于3.5 MN;列车脱轨情况下的脱轨荷载模式和作用位置对U形梁抗倾覆稳定性的影响显著;U形梁跨中区域加载侧的底板和腹板在侧向位移加载模式下发生了大面积塑性损伤,腹板还发生了明显的侧向变形;U形梁在侧向撞击作用下的失效模式表现为腹板侧向承载力达到极限而发生破坏,通过拟静力分析确定U形梁腹板侧向极限承载力为1.5 MN,结构整体不会倾覆失稳。在设计和使用阶段应对U形梁腹板的损伤和承载力评估予以重点关注。  相似文献   

19.
以俄罗斯萨哈林岛卡萨弗斯跨海大桥为研究对象,由于海洋环境的影响钢梁受到严重腐蚀,损伤程度较大,有必要进行相应的受力性能评估。利用有限元模型对损伤部位进行模拟,根据锈蚀损伤程度对钢混桥极限承载能力进行了分析和评估,结果表明,桥梁破损严重但承载能力符合规范标准,并提出了改造建议和未来的研究方向。其结果具有一定的理论意义和工程实践应用价值。  相似文献   

20.
PBL剪力键承载力影响因素和计算公式研究   总被引:2,自引:0,他引:2  
由于采用了不同的PBL试件,考虑了不同的影响因素,国内外现有的PBL剪力键承载力计算公式差异较大。本文设计、制作了20组不同的PBL试件共59个,完成了极限承载力试验,研究分析了各种因素对PBL键承载力的影响,并在此基础上提出了PBL键承载力计算公式。结果表明,影响PBL键极限承载力的主要因素是钢板孔洞大小、贯通钢筋的大小和强度、混凝土强度和箍筋强弱;其次是每个试件的孔洞个数和贯通钢筋个数以及试件尺寸等。本文提出的PBL键承载力计算公式较全面地考虑了上述各主要因素,物理意义明确,与其他公式相比,其计算结果和本文的试验结果最为吻合。该公式可用于PBL键的设计计算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号