首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
针对24,32,40,48和64 m简支梁,以及CR400AF型中国标准动车组,建立移动荷载列-桥梁系统模型,开展动力仿真计算,分析不同时速的动车组驶过不同频率、不同跨度简支梁时的梁体动力响应,并综合容许动力系数要求与规范规定,进行时速400 km及以上高速铁路更大跨度区间简支梁的竖向频率限值研究。结果表明:梁体动力系数从大到小的简支梁跨度排序为24,32,48,40和64 m;5~7 Hz的竖向频率范围是梁体动力响应敏感区域;对于速度400 km·h~(-1)的CR400AF型动车组,24,32,40,48和64 m简支梁的竖向频率限值分别为6.0,5.5,2.7,2.4和2.1 Hz;CR400AF型动车组的运营速度由400 km·h-1提高至430 km·h~(-1)时,24和32 m简支梁竖向频率限值需要提高0.5 Hz,而40 m及以上跨度简支梁竖向频率限值保持不变。  相似文献   

2.
研究目的:我国高速铁路桥梁以跨度32 m预应力混凝土简支箱梁桥为主,对于下部基础费用占比大的桥梁区段,采用大跨度简支梁可以显著降低工程费用,高速铁路大跨度简支梁是一个重要的研究方向,其在列车作用下的动力特性是设计需要考虑的关键因素。本文利用移动荷载列计算方法,分析车桥共振条件,提出不同跨度混凝土简支梁的方案设计,分析列车作用下大跨度简支梁的动力特性,为确定高速铁路大跨度简支梁的合理跨度提供支撑。研究结论:(1)共振速度与简支梁自振频率和车长相关;车长d与跨度L的比值是简支梁桥车桥共振的关键影响因素;(2)大跨度简支梁设计中,静活载作用下的梁端转角限值决定了简支梁的最小梁高;(3)当跨度逐渐接近动车组车长的2倍时,简支梁的动力系数和跨中加速度也逐渐增加;有限元分析的车桥共振现象与公式分析的结论基本一致;(4)本研究成果可指导高速铁路大跨度简支梁的工程设计。  相似文献   

3.
考虑轻型桥梁结构和轨道结构的发展方向,有必要研究基于桥面加速度的基频限值.采用移动荷载列模型,针对32、40 m跨度高速铁路简支梁在不同质量、不同设计速度下进行车桥动力理论分析,基于桥面加速度评判指标给出了基频限值.研究结果表明:随着梁体自振频率增加,列车作用引起的桥面加速度逐渐减小.相同计算条件下,线质量越大计算得到...  相似文献   

4.
根据目前城际铁路桥梁设计相关资料,拟定城际铁路常用跨度简支箱梁的截面尺寸,建立有限元模型,进行结构的竖向基频计算,根据设计荷载效应大于等于实际运营车辆荷载效应的原则,得出各跨度简支梁实际运营车辆最大容许动力系数。应用车辆-桥梁耦合振动分析理论,进行动力仿真分析,得到各跨度简支梁在实际运营车辆下的实际动力系数。通过比较得出,按照国际铁路联盟规定的桥梁结构频率下限值设计,能够满足结构安全及舒适性要求。  相似文献   

5.
变速移动荷载作用下简支梁的动力响应分析   总被引:2,自引:0,他引:2  
以变速移动荷载模拟车辆变速过桥,建立车轮加弹簧—阻尼器—簧上质量和均布质量2种变速移动荷载下欧拉梁的动力分析模型,并推导其运动控制方程。运用数值分析,研究简支梁在不同上桥初速度和加速度的匀变速移动荷载作用下的动力响应。结果表明:荷载以不同的加速度变速过桥时,桥梁的跨中挠度时程和动力放大系数曲线与匀速过桥时相似;变速移动荷载对桥梁动力响应的影响与荷载上桥初速度、加速度以及桥梁跨度等因素有关;移动车辆荷载使梁发生极大动力响应的上桥初速度出现在若干速度点上,是不连续的;跨中挠度不随移动荷载加速度的变化单调变化;简支梁跨度越大,变速移动荷载对跨中挠度的影响越大。  相似文献   

6.
结合上海至南通铁路过江通道工程,针对设计构思的千米级跨度桥梁方案,进行主跨1008 m斜拉桥和悬索桥力学性能研究.按照我国双线铁路标准布置荷载,考虑客货共用,进行桥梁静力变形分析和车桥耦合动力仿真分析.结果表明,在时速80 km货运列车和时速200 km客运列车作用下,跨度1 008 m斜拉桥和悬索桥的静、动力变形性能...  相似文献   

7.
车桥系统共振机理和共振条件分析   总被引:2,自引:0,他引:2  
夏禾  郭薇薇  张楠 《铁道学报》2006,28(5):52-58
通过理论推导和分析实例研究列车以一定速度通过桥梁时,车桥系统的共振机理和发生共振的条件。根据发生机理的不同,车桥系统可能发生几种不同形式的共振,包括由车辆重量、离心力、横向平均风荷载等形成移动荷载列的周期性动力作用引起的桥梁共振,由移动荷载列加载速率引起的桥梁共振,由轨道不平顺、车轮扁疤、轮对蛇行等周期性加载引起的桥梁共振;由桥跨的规则性排列及其挠度的影响,对移动车辆形成周期性动力作用使车辆出现的共振。车桥系统的共振条件与桥梁跨度、长度及竖向和横向刚度,列车编组、车辆轴距参数及车辆的自振频率等因素有关。  相似文献   

8.
高架车站是建筑和桥梁综合体,承受列车动力作用。根据列车的实际编组和轮对,运用ANSYS APDL程序开展以下研究:(1)采用瞬态分析,计算钢轨磨损和接头不平顺条件下列车动力对高架车站的轨道梁、支撑柱的作用力,发现钢轨磨损下列车作用力影响较大;(2)以磨损不平顺为基础,分别计算列车运行时速60 km、80 km、120 km条件下对轨道梁、支撑柱的作用,结果表明列车运行时速越大,列车动力对轨道梁的作用力越大;(3)采用静力分析,将列车轴重乘以铁路设计规范计算动力系数按移动荷载施加在轨道梁上,计算结果与钢轨磨损条件下列车设计时速80 km计算完全一致;(4)将列车按均布荷载施加在轨道梁上,比较上述三者的差别,结果显示施加均布荷载造成轨道梁支座弯矩偏大、跨中弯矩偏小、支撑柱轴力偏大。根据列车作用下轨道梁内力分别以容许应力法和概率极限状态分析法进行配筋比较,两者配筋结果基本一致。  相似文献   

9.
对活性粉末混凝土疲劳试验实测资料进行分析,提出铁路活性粉末混凝土桥梁疲劳验算中混凝土相关疲劳可靠性设计参数取值。编制程序计算多种跨度简支梁在客运专线疲劳列车作用下标准荷载效应比频谱,给出不同跨度简支梁中活性粉末混凝土等效重复应力换算系数。对32m预应力活性粉末混凝土桥梁承载能力极限状态可靠指标进行分析,给出建议的活性粉末混凝土桥梁疲劳设计目标可靠指标和设计验算表达式。  相似文献   

10.
运用桥梁结构力学原理,结合数学解析法、规划求解法,对新铁路列车荷载图式的双孔重载计算方法进行了探讨,并利用图表分析作用于桥墩顶的荷载随着铁路列车移动而变化的规律。计算模型准确、方法实用简便、计算公式精确度高。适用于采用新铁路标准活载的标准及非标准跨度铁路简支梁桥墩的设计检算。  相似文献   

11.
济青高速铁路(40+70+70+40) m槽形连续梁是国内外跨度最大的高速铁路双线预应力槽形连续梁。为分析其列车通过时的动力性能,建立列车-轨道-槽形连续梁动力相互作用模型,编制铁路列车-轨道-桥梁耦合动力仿真软件RTTB,利用现场实测数据验证仿真软件的工程可用性,对动车组与货车过桥时系统的动力响应进行数值计算和评估。结果表明:CRH2动车组、CRH3动车组、C64货车在设计速度范围内以单列或者双列的形式通过桥梁时,车辆的安全性指标均合格,平稳性指标为优秀,桥梁的各项动力响应指标均满足规范要求,槽形连续梁结构设计合理,满足设计要求。  相似文献   

12.
直线电机列车作用下高架桥的动力响应分析   总被引:1,自引:0,他引:1  
建立直线感应电机(LIM)运载系统中列车与高架桥梁的动力相互作用空间分析模型,它由车辆模型和有限元桥梁模型组成。对具有2个转向架的4轴LIM列车车辆建立27个自由度的车辆动力模型。通过对有限元桥梁模型采用模态综合技术,以轨道不平顺作为系统的激励源,建立LIM列车和高架桥梁的耦合运动方程组,并编制计算分析程序。以一座3跨30 m简支梁高架桥为例,模拟LIM列车上桥、出桥的全过程,计算分析高架桥梁的自振特性及其在LIM列车通过时的动力响应特点。研究表明:由LIM列车引起的桥梁横、竖向位移响应值较小,远小于铁路规范的容许值;桥梁的竖向挠度主要受列车的重力荷载控制;桥梁最大横向位移响应出现在墩顶处,随着墩高和车速的增大而增大。  相似文献   

13.
Research purposes: The bridge in circinate line of Hefei Railway Hub was built in the curve with radius of 300 m. In order to reduce structural height of the bridge across the Huainan railway, the single-line simple trough girder bridge with 32 m span was applied. The lateral vibration of the vehicle and bridge is intensified under the action of centrifugal force, and the torsion effect is obvious when the train running on the bridge in the small radius curve. On the other hand, the torsional rigidity of the trough girder with open section is lower than that of the closed box girder. Moreover, the wheel lateral force and the derailment coefficient is increased, and the reduction rate of wheel load is also increased owing to centrifugal force caused by unbalanced superelevation. In order to ensure the safe and smooth operation of the train and reveal the dynamic performance of the trough girder bridge in the small radius curve, the vibration response of the single-line trough girder bridge is tested and analyzed. Research conclusions:(1) The measured vertical and horizontal fundamental frequencies of the trough girder bridge are obviously larger than the vertical self-vibration frequency limit given by the relevant specification and the normal value of the measured transverse minimum natural vibration frequency. The lateral stiffness of the bridge is mainly controlled by its foundation stiffness. (2) The stiffness of the bridge can meet the requirements of C62 freight train safe running on the trough girder bridge in the curve with radius of 300 m at a speed of not more than 40 km/h. (3) The transverse vibration response of the bridge consists of the transverse static response of the structure caused by the centrifugal force and the lateral dynamic response caused by the coupling vibration of the vehicle-bridge system. (4) The research results can be referenced in the design of the railway bridge in the curve and coupled vibration analysis of trains and bridge in the small radius curve. © 2018, Editorial Department of Journal of Railway Engineering Society. All right reserved.  相似文献   

14.
高速铁路32m简支箱梁声辐射特性研究   总被引:3,自引:0,他引:3  
将列车-轨道-桥梁耦合振动理论与声辐射分析边界元法相结合,分析高速铁路32m单箱单室和单箱双室箱梁声辐射特性。结果表明:单箱单室箱梁动力响应均大于单箱双室箱梁,2种截面梁型在10~100Hz范围内振动密集,表现出结构局部振动特性,须采用板单元进行动力分析;箱梁结构噪声以低频为主,分布在小于250Hz频带内,适合采用边界元法求解;各场点声压级在梁底空间变化较小,距离每增加2m,声压级平均降低1.2dB,越靠近地面,声压级衰减越小;各场点声压级随与桥梁中心线距离的增大而减小,距离每增加9m,声压级平均降低3.7dB;距桥梁中心线25m处,各场点声压级随距地面高度增加而减小;行车速度为160~240km/h时,单箱单室箱梁比单箱双室箱梁声压级平均大14.2~4.3dB,速度越高,声压级差别越小。  相似文献   

15.
以某磁浮轨道交通(40+80+228+228+80+40)m大跨钢箱梁斜拉桥为研究对象,采用有限元软件ANSYS和多体动力学软件UM分别建立桥梁和磁浮列车模型。基于车桥耦合振动方法,针对2列磁浮列车相向行驶并在主跨跨中交会的最不利情形,进行列车以不同速度通过桥梁时不同梁高下车桥系统的动力响应及磁浮大跨桥梁的竖向刚度限值研究。结果表明:磁浮列车的竖向动力响应随车速的增大而显著增大,时速从40 km增大到140 km时,列车竖向动力响应增幅达到120%以上;车体竖向加速度和Sperling指标不是桥梁结构刚度限值的控制因素;磁浮列车的悬浮间隙对梁体刚度变化较为敏感,随着梁体刚度逐步增大,悬浮间隙的波动变小,梁体挠跨比减小约25%,悬浮间隙波动减小幅度达35%,悬浮间隙可作为中低速磁浮大跨桥梁结构刚度限值的控制指标;梁体挠跨比1/3015可作为磁浮大跨桥梁的竖向刚度限值。  相似文献   

16.
30m简支梁桥墩车桥耦合动力仿真分析   总被引:1,自引:1,他引:0  
根据车桥耦合振动分析理论,运用桥梁结构动力分析程序BDAP,针对城际轨道交通30m简支梁桥墩3种不同墩高方案,采用空间有限元建立全桥动力分析模型,对桥梁空间自振特性进行了计算,并对3种不同墩高方案在CRH2和德国ICE3动车组作用下的车桥空间耦合振动进行了分析,评价3种不同墩高方案的动力性能以及列车运行安全性与舒适性。研究结论表明:(1)3种墩高方案(H=8m、12m、15m)的全桥一阶横向自振频率分别是0.909Hz、1.051Hz和1.034Hz;(2)在CRH2和ICE3动车组以速度160km/h通过时,简支梁跨中竖向振动位移和竖向振动加速度较小,在限值以内;(3)在CRH2和德国ICE3动车组以速度160km/h运行时,车辆竖向和横向舒适性均能达到"优"。说明3种墩高方案具有足够的全桥横向刚度,满足列车时速160km行车的安全性和良好舒适性要求。  相似文献   

17.
郑济铁路郑州黄河特大桥首次采用40 m简支箱梁预制架设,并基于40 m箱梁的结构特点,运用BIM技术辅助梁场建设、创新装配式预制模具,推动箱梁的绿色建造。本文以该项目为依托,阐述40 m铁路简支箱梁预制架设关键技术,通过对钢筋数控加工、钢绞线穿束台车、自动张拉和孔道压浆系统、静载试验自控系统、管理信息平台等智能化工装和信息系统的开发应用,提升了箱梁预制效率和质量;通过正位提梁工法和运架远程监控技术,攻克了复杂工况下“四线双层”公铁两用桥梁的箱梁架设难题,成功推进了高速铁路40 m简支箱梁的工程化应用,推动了我国高速铁路桥梁建造技术的发展。  相似文献   

18.
针对高铁桥梁运营性能参数传统测试方法存在的数据采集设备安装困难、数据传输不稳定、工作效率低等问题,运用地基雷达非接触、高精度、高频率测量技术,对京沪高铁31.5m预应力混凝土双线简支箱梁进行运营性能检定。结果表明:在动车组时速为300km以上、载客运行状态下,检测得到该桥梁体的自振频率为6.823Hz,挠跨比为1/7 150~1/9 450,梁端转角为0.33‰~0.43‰;单线运行条件下梁体竖向振幅为0.13mm,横向振幅为0.07mm;实测动力系数小于运营动力系数;基于地基雷达的检定结果与传统方法检定结果相吻合;简支箱梁的运行性能参数与相关规范规定的通常值相接近;采用地基雷达能够方便、快速、高效地检定出高铁桥梁的梁体自振频率、梁体跨中挠度、梁端转角、运营动力系数、跨中竖向振幅和横向振幅,为我国高铁简支箱梁运营性能检定提供了新的方法。  相似文献   

19.
我国快速发展的经济对铁路运输能力的要求不断提高,既有铁路重载扩能运输改造进程不断推进,随之提高的列车轴重必然会降低既有铁路桥梁的活载储备量,从而导致T梁的整体刚度和耐久性下降。通过对不同跨径桥梁活载储备量的计算分析,进而选取跨度12 m混凝土T梁作为研究对象进行静力适应性分析,对梁体跨中截面主筋应力、梁体跨中截面上翼缘混凝土压应力及梁体跨中底板裂缝宽度进行检算;并且建立动力有限元模型,分析不同列车荷载作用对跨中横向加速度及横向振幅的影响规律,并与试验实测结果进行对比分析。研究结果表明:在270 k N和300 k N轴重重载列车作用下,梁体受拉钢筋最底部主筋应力均超过容许值;结构动力响应随着车辆轴重增大而增大; 12 m跨低高度简支钢筋混凝土梁横向动力适应性优于普通高度简支梁,两者均满足开行大轴重重载货车要求。  相似文献   

20.
先简支后连续技术在高速铁路PC桥中应用初探   总被引:2,自引:1,他引:1  
高速铁路桥由于高速行车平顺性的需要 ,对桥梁的刚度、上拱度等提出很高的要求。高速铁路桥梁中大量采用的是预应力混凝土简支梁 ,为满足技术要求 ,梁高较大 ;连续梁桥的受力和变形性能优于简支梁桥 ,但由于连续梁施工的复杂性 ,影响其在 40m以下跨度铁路桥中的使用 ;采用先简支架设、后体系转换为连续梁的先简支后连续结构和工艺 ,综合了简支梁和连续梁的优点。以高速铁路桥作为应用背景 ,通过对比分析 ,对预应力混凝土先简支后连续梁的施工、构造、受力、刚度和后期徐变上拱度等进行初步的探讨 ,论证其在高速铁路桥梁中应用的优越性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号