首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纵向风速和排烟风量是影响纵向通风结合集中排烟火灾通风方案效果的两个重要因素,为合理分析二者的影响特性并确定二者大小,借助CFD技术分析纵向垂直风流和排风诱导斜向风流所形成的多向风流耦合作用对隧道火灾温度场的影响。结果表明,排烟风量一定,纵向风速提高会使火源区温度梯度增大,烟气扩散区温度梯度减小,并且火源上下游排烟口以内的范围温度分层现象明显,而到排烟口的位置开始出现分层失稳;同时,排烟量一定通过调整纵向风速或纵向风速一定通过提高排烟量均可以获得良好的温控效果。  相似文献   

2.
地铁区间隧道内对乘客生命威胁最大的是火灾烟气,因此防灾的关键在于烟气控制。车头和车尾火灾时采取纵向通风能使人烟分离,但对于列车中部着火时下风侧乘客将不可避免地在烟气笼罩的环境中。提出了火灾烟气纵向分区控制模式,即利用防烟隔板将隧道划分成行驶区和疏散通道2个防烟分区,采取适当通风阻止烟气侵入疏散通道,保障人员疏散过程与烟气分离。通过1∶5隧道模型中烟气分区控制试验结果的比较分析,证实采取不同通风方式均可使疏散通道保持较高压力,使气流由疏散通道流向行驶区,以阻止火灾烟气侵入疏散通道内,但不同通风方式在高温控制及烟气控制效果上存在差异,其中以疏散通道正压送风及行驶区单侧排烟相结合的通风方式综合控制效果最好。  相似文献   

3.
通过对目前地铁大断面区间隧道通常采用的纵向通风的防排烟方式进行分析,针对纵向通风存在的烟气过站、车中火灾时部分乘客在烟雾中疏散等问题,提出利用区间隧道顶部空间,设置排烟风道的半横向通风方式,并针对半横向通风方式存在的问题进行分析和提出相应解决方案,所得结论可为地铁工程中大断面区间隧道的防排烟设计提供参考。  相似文献   

4.
目前对高海拔铁路隧道火灾的研究较少。本文应用火灾动态仿真模拟软件(Fire Dynamic Simulation,FDS)对海拔500,3000 m铁路隧道内的火灾烟气蔓延进行了数值模拟分析,对比了高海拔环境低温、低压、低氧等显著特征及纵向风速对隧道火灾的影响。结果表明,在本文的火灾计算条件下海拔3000 m时隧道内的最高温度比低海拔时低24.8%,CO浓度增大30%~50%;海拔3000 m时随着纵向风速增加,拱顶最高温度显著下降,最大降幅达62.5%,且最高温度点向下游偏离火源区边缘上方;火源上游温度减小且升温范围逐渐减小,纵向风对上游烟气的“稀释”“阻拦”作用强于下游。  相似文献   

5.
基于某超长水下公路隧道的重点排烟系统,采用羽流质量流量的计算公式得出火灾产烟量,使用火灾烟气模拟软件FDS建立分析模型,对超长水下隧道重点排烟系统的排烟量、排烟效率、纵向风速、开启排烟口方案、火源上游可用疏散时间等进行了分析。首先,介绍了现有重点排烟系统及重点排烟量设计标准的相关内容;其次,提出了重点排烟量的理论计算方法;最后分析了该超长水下隧道重点排烟系统的各工况排烟效果,认为采用羽流质量流量的计算公式、排烟口设置对应的排烟效率进行理论重点排烟量计算,排烟风道、排烟风机需考虑排烟口漏风量。  相似文献   

6.
以宝(鸡)兰(州)客运专线渭河特长隧道为例,对"V"字线形隧道火灾模式下烟气流动特性和分布特征进行三维数值模拟研究,对含竖井区段进行计算模拟,分析火灾烟气在隧道内的流动特性和分布特征。通过对不同火源位置、不同纵向通风形式和不同横通道通风状态下火灾工况的模拟计算,分析纵向通风对火灾烟气流动、横断面烟气分布、拱顶中心和一人高处温度分布的影响,得出温度控制的可用安全疏散时间曲线。当救援通道位于火灾上风区时,为避免高温烟气回流,应保证有≥1.0 m/s的纵向通风;当救援通道位于火灾下风区时,为确保疏散人员安全,应改变纵向通风方向,使救援通道处于上风区。  相似文献   

7.
分析V形坡水下铁路隧道内火灾时烟气流动过程中受到的火风压和空气阻力,采用火灾动力学模拟软件对不同火源功率、不同隧道坡度下V形坡隧道内不同火源位置下烟气蔓延特性进行模拟,研究火源功率、V形坡坡度和火源位置对水下铁路隧道内烟气竞争效应的影响。结果表明:V形坡隧道内的烟气从隧道近火源侧端口流出,空气从隧道另一侧端口进入,两侧坡度对烟气蔓延存在竞争效应;火源位于V形坡隧道左侧时,火源上游烟气层与隧道顶板平行,火源下游与变坡点间的烟气层与水平地面平行,当烟气经过隧道变坡点时烟气层不再与水平地面平行;在竞争效应的作用下,火源下游的烟气逆流长度随火源距变坡点距离的增大呈现出减小、然后保持不变、再略有增大3个阶段;随着隧道坡度的增大,烟气逆流长度逐渐缩短,稳定区的范围逐渐增大,而火源功率对烟气逆流长度的影响逐渐减弱。  相似文献   

8.
采用数值模拟方法获得隧道纵向通风排烟模式下的可用安全疏散时间,并与采用Togawa经验公式计算的所需安全疏散时间进行对比,以此判断人员疏散安全性,分析确定通风临界时间。结果表明:隧道纵向通风排烟下,通风开始时间对人员疏散安全性影响显著。通风开始时间早于180s人员疏散不安全;当火源功率不大于15MW时,通风开始时间不早于180s即可保证人员安全疏散,而火源功率大于15MW时,通风开始时间不早于180s且不晚于240s才能保证人员安全疏散;当纵向通风风速大于3m·s~(-1)时,通风开始时间不早于180s即可保证人员安全疏散,而纵向通风风速不大于3m·s~(-1)时,通风开始时间不早于180s且不晚于300s才能保证人员安全疏散。综合得出铁路隧道内列车发生火灾时通风临界时间为180s。  相似文献   

9.
以上海市域铁路申昆路地下停车场为例,对市域动车组地下停车场消防设计进行了深入研究。动车组存车区是消防设计的最关键区域,且国内还无相关的消防设计规范。通过理论分析及火灾场景模拟方法,对存车区内烟气流动、安全疏散环境进行了模拟分析,提出在存车区设置纵向挡烟垂壁形成“类隧道”的通风排烟模式,解决了火灾工况下火灾蔓延、烟气扩散、人员疏散等消防难点,并提出针对性的工程措施。  相似文献   

10.
为探明铁路隧道救援站内的拱顶温度,以高黎贡山隧道为背景,建立考虑纵坡的1:10铁路隧道救援站及列车缩尺寸模型,研究不同火源位置(高端、中部和低端)在不同通风模式(自由蔓延、纵向通风和半横向通风)下对救援站拱顶温度纵向分布的影响.结果 表明:自由蔓延模式下,火源位于隧道中部时拱顶温度最高,达到940℃,远高于其他2种模式...  相似文献   

11.
介绍了武汉轨道交通8号线大直径盾构越江区间隧道的通风设计方案,特别对火灾工况,从排烟模式、风道漏风、风机配置等方面,比较了分段纵向通风和半横向通风两种方式的优缺点,最终选定了分段纵向排烟方案。在火灾规模取值10.5MW条件下,利用SES软件对区间内典型火灾工况进行了模拟计算分析,结果表明通过区间两端风机联合动作,采用集中设置排烟口的分段纵向排烟方案,可满足越江区间内火灾排烟临界风速及人员疏散要求。  相似文献   

12.
地铁隧道火灾疏散救援问题的研究   总被引:1,自引:0,他引:1  
根据地铁隧道内列车火灾的特点,在分析隧道火灾原因、烟气扩散影响和人员疏散时间等基础上,提出隧道火灾排烟模式原则,以及在隧道内采用侧向疏散平台加联络通道、在列车上应用细水雾消防技术等建议.  相似文献   

13.
某水下隧道长9.64km,但由于其地处水下的特殊性和重要性,需要在考虑运营通风的同时考虑隧道的防排烟通风。通过对运营通风和防排烟通风采用全纵向通风模式进行了详细的设计计算,综合考虑运营与防排烟通风,两者共用一套风机,采用切换控制策略来实现运营通风与防排烟通风效果,有效节约了成本,为以后的类似隧道建设工程提供设计经验和参考。  相似文献   

14.
以青岛某地铁跨海隧道为研究对象,论述其工程概况及防排烟系统设计,并建立物理模型。从火源强度、火源类型设定、燃烧模型、几何模型网格设置和火灾耐受极限判断标准方面设置边界条件。采用FDS数值模拟分析方法,对隧道内的温度分布、正线隧道内的风速、正线隧道内能见度、正线隧道内的CO浓度分布进行分析,提出慎重选取隧道防灾通风方案和合理控制风机的开启时间对隧道火灾中的人员安全疏散至关重要的结论。  相似文献   

15.
针对地铁长大过海区间隧道通风排烟问题,结合青岛地铁1号线瓦贵区间工程,采用理论及对比分析、数值解算等方法,分析过海区间隧道区间风井设置、火灾工况气流组织等问题。介绍青岛地铁1号线瓦贵区间概况,然后提出区间风井设置的要点,参考国内相关城市过江工程实例,采用土建排烟风道,以保证灾害工况下两车追踪人员的疏散安全。阐述陆域段防排烟和海域段防排烟方案,对于陆域段,排烟方案可以按照常规地铁区间进行设置;对于海域段,需根据区间长度,采用全吊顶或者局部吊顶排烟方案。通过研究区间火灾安全目标,设定热释放功率为10 MW,隧道临界风速为2.1 m/s,重点排烟量为80 m3/s,并绘制通风网络解算结果图,解算结果表明各区间风井的防排烟系统均满足规范要求。  相似文献   

16.
为分析上海地铁1号线某枢纽车站隧道火灾防排烟能力,分别对该站自然通风、开/关站台轨旁侧排烟风机(UPE)等机械排烟条件下,10 MW列车火灾时的车站烟气温度场、烟雾分布及浓度进行了数值模拟与分析研究。研究表明,火灾列车进入车站时必须及时开启车站排烟风机(SEF)、隧道事故风机(TVF)和轨旁侧排烟风机(UPE),方能使站台隧道内风速接近临界速度,基本消除站台隧道内烟气逆向扩散,同时烟雾限制在隧道局部且浓度较低,有利乘客疏散。目前该排烟机制下站台层部分楼梯口烟气温度仍偏高,风速未达到地铁设计规范要求,存在安全隐患,应当引起运营部门的重视。  相似文献   

17.
本文结合深圳地铁龙华线的实际情况,模拟在实际运营的情况下,区间隧道同时存在3列列车在同一区间隧道内情况下,隧道通风系统能否在火灾工况下火灾模式通风;测试火灾工况下区间隧道排烟系统的排烟效果,并对区间隧道火灾排烟风速测试结果进行了分析,并提出了有关结论,文章对工程设计与管理提供参考和借鉴。  相似文献   

18.
为研究铁路隧道中主隧道与斜井风流在火灾模式下的相互影响,分别对不同主隧道风速、斜井风速以及火灾规模等组合情景下的铁路隧道火灾进行燃烧模型试验。研究结果表明:火灾规模越大,隧道拱顶处最高温度越高,与火灾规模15 MW相比,火灾规模20 MW的最高温度升高130℃;与主隧道内通风2.5 m/s相比,不通风时拱顶最高温度升高140℃,且后者主隧道内火灾烟气更易侵入斜井;斜井向主隧道送风风速越大,含斜井主隧道段内的拱顶温度越低;与不送风相比,斜井送风风速为3 m/s时火源拱顶最高温度约降低80℃,不含斜井主隧道段内拱顶温度变化不明显;斜井送风风速越大,烟气进入斜井内的长度越短,与不送风相比,斜井内送风风速为1 m/s时斜井内烟气长度减少74 m;保证主隧道火灾烟气不侵入斜井的临界风速为2 m/s。  相似文献   

19.
隧道火灾三维数值模拟的瞬态分析   总被引:2,自引:0,他引:2  
用连续方程、动量方程、能量方程及气体组分方程描述隧道内气流流动状态,采用湍流粘性系数模型中考虑浮力影响的湍流模型方程(K-ε方程),对某实验隧道火灾进行三维数值模拟瞬态分析,研究隧道火灾特性和烟气的速度场及温度场发展规律。研究结果表明,在横截面上先被加热的是拱顶,随着时间推移,高温烟气不断对其进行对流换热,整个横截面温度逐渐升高,且分布发生变化,经过一定时间后,分布形式基本确定,并向稳态逼近。采用3 m.s-1的机械通风,隧道内没有出现烟气逆流区,很好地抑制了气流的回流,满足隧道火灾通风要求,为上游人员及车辆逃离提供了气流通道。  相似文献   

20.
研究目的:隧道防排烟是隧道设计中的重点和难点,如何合理的设置防排烟系统不仅关系到隧道设计的成败,同时也关系到人民生命财产的安全。本文结合一水下特长隧道,研究如何选择合理的隧道防排烟设计方案,并为其他隧道设计提供借鉴。研究结论:根据隧道所处路网、隧道内防灾救援设施的设置及交通状况、通风系统设置等实际情况,分析隧道不同路段灾害发生概率及造成损失的可接受程度,吸收性能化消防设计理念,对重点防灾地段采用横向重点排烟方案、对一般地段采用纵向综合排烟方案。并将民用建筑的防排烟设计理论引入到隧道防排烟设计中,完善了隧道防排烟设计理念。通过分析服务隧道和气流、人流组织情况,取消了服务隧道的正压设计,使隧道防排烟方案技术经济上更加合理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号