首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 19 毫秒
1.
为研究不同类型钢轨上有轨电车的小半径曲线通过能力,基于多体动力学理论,建立了四模块低地板现代有轨电车仿真模型。在模型中考虑CHN60钢轨与60R2槽型轨的影响,并依据规范设置了3条小半径曲线线路,最后以车辆脱轨系数和轮重减载率为评价指标,对有轨电车小半径曲线通过能力进行评价分析。结果表明:两种钢轨上的有轨电车非线性临界速度均能满足车辆运行要求,且运行在CHN60轨上的车辆具有更好的非线性运动稳定性;在小半径曲线线路上运行时,60R2槽型轨上的车辆具有更好的稳定性,且槽型轨断面具有一定的护轨功能,因而在有轨电车钢轨选型上,建议使用槽型钢轨。  相似文献   

2.
通过理论分析对时速400 km铁路线路最大曲线超高、欠超高以及最小曲线半径进行了研究,并建立列车通过高速铁路曲线地段动力学仿真计算模型,对不同工况下高速列车动力学各项安全性和平稳性指标进行计算分析。结果表明:时速400 km高速铁路最大曲线超高、欠超高、过超高、欠过超高之和、最大曲线超高与欠(过)超高之和等参数可以采用既有350 km/h高速铁路规范规定值;高速列车以400 km/h速度通过7 500,8 500,9 000 m半径曲线时,脱轨系数、轮重减载率、轮轴横向力等各项安全性指标均在限值以内;从平稳性方面考虑,高低速列车不共线运行时,对时速400 km高速铁路推荐最小曲线半径为9 000 m,一般条件下8 500 m,困难条件下7 500 m;高低速列车共线运行时,为了满足高低速匹配要求,推荐最小曲线半径为8 500 m。  相似文献   

3.
瑞士苏黎世市交通公司经营一个有轨电车网。扩建的有轨电车网于1986年投入运营。目前,有轨电车网线路总长166km,营业里程69km,最小曲线半径14.5m,采用Ri60R13槽形轨,轨距1000mm,最高速度60km/h。使用Mirage型(1966~1969年制造)和Tram2000型(图1)2种系列车辆,新的Cobra型车辆逐步替代Mirage型车。  相似文献   

4.
我国正在建设的合宁铁路即将同时开行250km/h动车组和120km/h货物列车,曲线超高设置应保证客货列车运行安全和旅客舒适度,同时考虑减少养护维修工作量。对合宁铁路曲线外轨超高设置进行了计算分析,提出了曲线外轨超高设计建议值。  相似文献   

5.
高速铁路曲线线路车线耦合系统动力学性能仿真分析   总被引:1,自引:0,他引:1  
依据系统工程理论,建立高速铁路曲线线路车线耦合系统有限元模型,对曲线线路在高速行车条件下的耦合系统动力学性能进行仿真,研究时速300 km等级高速动车组作用下曲线线路安全与平稳性指标,曲线线路轨道结构各部分的振动响应、列车速度与曲线半径和超高的关系.结果表明动车组以350 km·h-1的速度通过半径为5 500,7 000和9 000 m的曲线线路时,动车组的垂向和横向振动加速度以及平稳性能均满足舒适度要求,而且脱轨系数和轮轴横向力也能满足列车运行安全性要求;钢轨支点的横向力表现为过超高时内轨侧大、外轨侧小,欠超高时外轨侧大、内轨侧小;钢轨、轨枕的垂向和横向加速度随速度增加明显增大,而道床和路基的垂向加速度变化不大;钢轨和轨枕的横向动位移和动态轨距扩大量随速度的增加而增大;相同速度下,曲线半径小的轨道振动相对较大.  相似文献   

6.
铁路曲线外轨超高智能系统   总被引:1,自引:0,他引:1  
提出了一种旨在调节铁路曲线段外轨超高的智能系统.介绍了该系统的组成及工作原理.该智能系统主要包括速度检测装置、中央处理系统、外轨超高调节装置、监控装置等,通过检测即将驶入曲线段的列车速度,计算出列车所需的外轨超高值,在列车驶入曲线段之前完成超高调节.该智能系统可实时调整铁路曲线外轨超高,以适应不同速度的列车对外轨超高的需要.  相似文献   

7.
张建 《铁道工程学报》2012,(6):10-14,54
研究目的:土耳其东西铁路干线拟按180~250 km/h速度目标值、客货共线混跑铁路标准建设,而目前国内尚无时速200 km以上的客运共线铁路标准,本文重点研究时速250 km客货共线铁路不同曲线半径条件下平面缓和曲线长度的合理取值。研究结论:(1)250 km/h客货共线铁路的缓和曲线长度要综合考虑未被平衡的横向加速度时变率和超高时变率;(2)在曲线半径一定时,速度越高,则超高越大;高速列车行车速度一定时,设计超高值是决定缓和曲线长度的主要因素;(3)250 km/h客货共线铁路要同时兼顾高、低速列车的安全性和舒适度,设计超高值较时速250 km的客运专线小,缓和曲线长度较短。  相似文献   

8.
为适应不同地区居民出行的差异经济承受能力,研究在客运专线出现的高速和普速列车共线运营的新运输组织模式下,无砟轨道超高设置的适应性问题。针对不同速度的高速和普速列车混跑模式,通过对欠、过超高容许值的分析、限值检算,超高与轮轨的关系,曲线半径与超高的关系,以及超高顺坡率的调整和计算,结论为:曲线的轨道超高设置按照250km/h速度的均衡超高来确定可满足大部分列车通过需求,并且缓和曲线全段设置超高顺坡。  相似文献   

9.
介绍苏州有轨电车基本结构特征,建立有轨电车-轨道力学模型,在分析轮轨接触特征的基础上,仿真分析了有轨电车在直线、曲线区段运行时的动力学响应。结果表明:轮缘两侧间隙值分别为6 mm和11 mm,当横移量大于6 mm,接触点爬上轮缘;当横移量大于11 mm,轮缘背部接触。直线和曲线区段的动力学响应满足安全性要求,直线区段平稳性指标属良好等级,曲线区段平稳性指标属合格以上等级。轨下结构部件设计荷载取值时,垂向轮轨荷载不宜低于名义荷载2.0倍,横向轮轨荷载不宜低于40.25 kN,钢轨扣压部件的力学性能应与钢轨变形相适应。在分析轮轨接触特性的基础上,研究有轨电车在直线和曲线区段运行时的动力学性能,为深入系统性认识有轨电车轮轨相互特征提供参考。  相似文献   

10.
研究目的:为研究地铁曲线尖轨道岔的不可逾越速度,本文以地铁9号曲线尖轨道岔为例,基于轮轨接触几何算法和车辆-道岔系统耦合动力学仿真计算,在综合考虑车辆侧向过岔时的安全性及平稳性的基础上确定曲线尖轨道岔的不可逾越速度,以期为列车折返能力的提高和城际轨道交通道岔的设计提供技术支持与储备。研究结论:(1)在尖轨顶宽40 mm时标准LM车轮型面与轨道接触点分布已经过渡到尖轨上,而磨耗状态LM车轮型面与钢轨的接触点分布可能在基本轨上或者尖轨上,轮载过渡位置延后;(2)车辆过岔时主要以车体横向加速度为控制指标确定不可逾越速度,因此在地铁车辆运行过程中可对车辆横向加速度进行实时监测,作为车辆运行安全性和平稳性的监测指标;(3)标准LM车轮型面时地铁9号曲线尖轨道岔的不可逾越速度为50 km/h,磨耗状态LM车轮型面时9号曲线尖轨道岔的不可逾越速度为45 km/h;(4)通过提高地铁车辆ATP顶篷速度来提高ATO速度,可缩短发车时间间隔,提高列车运行速度和对运量的储备;(5)通过对地铁曲线尖轨道岔不可逾越速度的分析,可对地铁车辆运行安全性和平稳性进行监测,并针对列车行车间隔加密后可能引起折返能力不足的问题,为道岔提速研发提供理论支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号