首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 421 毫秒
1.
高速铁路声屏障降噪效果及其影响因素分析   总被引:1,自引:0,他引:1  
根据我国高速铁路(客运专线)声屏障降噪效果实测结果及高速铁路列车运行噪声特性,就声源构成、频率特性、桥面系及防护墙对声屏障降噪效果的影响进行分析。结果表明,随着速度提高,声屏障总体降噪效果呈下降趋势;铁路声屏障对500Hz以上的中高频噪声具有较好的降噪效果,但对250Hz以下的中低频噪声效果不大;桥面系及防护墙可起到一定的声屏障降噪作用。因此,在铁路声屏障设计中应根据高速铁路声源特性进行声学设计计算;在环境影响评价中,也应采用合理的声屏障降噪效果并考虑桥面系及防护墙的屏障作用;同时,应加强提高声屏障构件的低频隔声性能和吸声性能。  相似文献   

2.
市域铁路噪声影响突出,需要采取有效的噪声防治措施,声屏障作为主动控制措施,一直被广泛采用。基于市域铁路的特点和运行速度,结合市域铁路成灌线测试数据的分析,从声源特性、声屏障设置原则及声学设计、结构形式等方面对市域铁路声屏障设置开展研究。指出:(1)市域铁路声源主要为轮轨噪声,噪声频谱呈宽频特性,桥梁、路堤区段在低频段和中高频段声能量均较为集中,桥梁二次结构噪声影响不能忽视,声屏障的设置应与桥梁结构减振降噪协同开展。(2)市域铁路声屏障声学设计时,评价时间内不能简单地将铁路噪声源视为无限长线声源,建议直立式声屏障附加长度取值为50~70m。(3)市域铁路列车脉动风压对声屏障结构选型影响较小,应加快对直立式声屏障顶部变化型、顶端降噪器的研制。  相似文献   

3.
高速铁路引入城区时,不可避免地对沿线的声环境敏感点尤其是高层住宅造成影响。为掌握高速铁路对高层住宅的噪声影响特点,指导工程设计采取可行的降噪措施,基于Cadna/A软件,建立西延高铁与某处声环境敏感点的噪声影响预测模型,以距离铁路20 m处的高层住宅为重点研究对象,预测西延高铁运营对该高层住宅的噪声影响,分别模拟3,10 m高直立式声屏障和半封闭声屏障的降噪效果。结果表明:在一定工况条件下,路基轨面以上5.5 m处,铁路噪声影响达到最大;3 m高直立式声屏障对敏感点地面至轨面以上2.5 m降噪效果明显,10 m高声屏障对高于轨面29.5 m的楼层降噪效果有限,半封闭声屏障对各层降噪效果明显,采取半封闭声屏障可确保该高层住宅噪声影响达标。  相似文献   

4.
直立式声屏障是我国高速铁路噪声控制主要措施,仅在声影区有较好的降噪效果,全封闭声屏障、半封闭声屏障等进一步降低噪声的声屏障类型虽已在城市轨道交通广泛应用,但在铁路应用案例极少,为了保护"小鸟天堂"生态环境,我国深茂铁路于国内首次采用全封闭声屏障,为了分析其降噪效果,采用间接法进行现场测量,结果表明:动车组运行速度不高于132 km/h时,全封闭声屏障可大幅降低列车通过噪声,且不存在声亮区,距线路不同距离、不同高度处,全封闭声屏障降噪效果可达16~18 dB;呈现宽频降噪性能,对于400 Hz以上的噪声,降噪量高达10 dB以上;630 Hz以上降噪效果高达15 dB以上。试验明确了全封闭声屏障降噪特性,为我国高速铁路声屏障选型和优化设计提供参考。  相似文献   

5.
对高速铁路声屏障降噪效果影响因素的探讨   总被引:4,自引:0,他引:4  
通过对现场铁路列车辐射噪声测量和理论分析计算,结合影响铁路声屏障降噪效果主要因素,得出如下结论:当列车运行速度低于250km/h时,对铁路沿线1~2层噪声敏感点建筑,采用防撞墙既有效又经济;声屏障相对越高、距轨道中心线越近,降噪效果越好。  相似文献   

6.
通过分析铁路噪声频谱特点,结合国家对环境噪声的要求和铁道行业对铁路声屏障的设计要求,对降噪环保产品铁路声屏障的降噪声学性能、机械强度力学性能、抗疲劳性能、防腐性能与防火性能进行了研究并提出相应要求,为铁路声屏障标准制修订和产品设计、制造、检验提供参考依据。  相似文献   

7.
郑州铁一中教学楼声屏障工程声学性能效果评价   总被引:1,自引:1,他引:0  
为了治理郑铁一中教学楼的铁路噪声污染,实施了声屏障工程。工程的声学性能表明:声屏障工程有效地控制了铁路噪声对教学楼的影响,大大改善了学校的教学环境质量。教学楼的平均噪声级降低了8.8dB(A),最高噪声敏感点的降噪量达到14.2dB(A);声屏障单位面积工程投资1269元/m^2;人均降噪投资为113.48元/dB(A)。研究结果为我国铁路声屏障建设提供了科学的参考数据和方法依据。  相似文献   

8.
干涉型声屏障结构的研究   总被引:1,自引:1,他引:0  
干涉型声屏障基于声波干涉消声原理并依据铁路噪声源特点设计制造而成。声学模型试验测试结果表明,干涉装置的降噪作用主要体现在位于声影区和亮区之间的过渡区域(亦称灰色区域),干涉装置附加降噪效果为3.0~5.6dB,与同高度的直立形声屏障相比,降噪效果提高2.0~3.2dB。与其它顶部吸声体相比,干涉型声屏障更适宜于控制铁路噪声。因此,在铁路噪声控制工程中具有良好的应用前景。  相似文献   

9.
测试列车通过一重载铁路路基区段时声屏障的插入损失值,分析不同牵引质量(5 000,8 000,12 000 t)和不同试验列车速度(60~100 km/h)3种声屏障的降噪效果和插入损失的频域特性。对首次在重载铁路中应用顶端降噪技术的干涉型声屏障的降噪效果进行了测试与分析。结果表明:声屏障的插入损失随列车速度的增加总体上呈减小的趋势;高声屏障高度由3.0 m增加至4.5 m,插入损失增加4.0 d B(A)以上;声屏障加装顶端降噪器,插入损失增加2.0 d B(A)以上;声屏障顶端降噪器对中低频噪声降噪效果显著,可有效提高声屏障工程总体降噪效果。  相似文献   

10.
声屏障工程是防治铁路噪声影响的有效措施,声学设计是保证声屏障工程降噪效果的重要手段和方法。通过郑铁一中声屏障工程学设计研究,给出了声学设计中应考虑的主要内容及解决方法。声屏障建成后,各主要评价点的实际降噪效果与理论计算值相差不超过1dB;主要评价点的24h等效连续A声级平均降噪量为10.4dB,超过预定目标值2.4dB,降噪效果非常显著。  相似文献   

11.
城际铁路单侧高层建筑物声屏障形式设计研究   总被引:3,自引:3,他引:0  
选择合理的声屏障形式与高度,可有效降低噪声污染、减少搬迁量。设置声屏障,是控制声传播途径的最有效办法。以某城际铁路穿越城市建成区,为保护单侧高层声环境敏感建筑为例,通过对直立式声屏障、全封闭声屏障和半封闭声屏障的比选,确定声屏障形式选用半封闭式。在满足接触网、桥梁等专业要求的基础上,通过声学计算、结构检算,确定半封闭式声屏障总高度为8m,跨度11.3m。对于列车设计时速250km及以下时速的城际铁路,设置半封闭式声屏障,单侧降噪效果在8.7~11.2dB,可满足铁路边界噪声限制要求。  相似文献   

12.
李志强 《铁道建筑》2020,(1):148-152
针对高速铁路车外噪声频带宽的特征,设计了一种第1层为铝纤维板、第2层为铝微穿孔板的新型复合吸声结构。通过理论研究和试验测试优化调整其结构参数,利用多模态耦合获得了与以往的共振吸声结构相比更宽频带的高吸声性能。经测试,该结构总厚度为100 mm时,吸声系数在250~5000 Hz频段均不小于0.8,降噪系数为0.92,可覆盖高速铁路环境噪声的主要频率成分;总厚度继续增大,低频吸声系数和降噪系数可进一步提高。所设计的宽带复合吸声结构不仅吸声性能佳,选用的材料还具有良好的耐候性和物理、化学性能,绿色、环保、可回收利用。将其应用于我国高速铁路噪声控制工程,有助于推动我国绿色铁路建设。  相似文献   

13.
高速铁路所辐射噪声对周围环境的危害通常采用吸声型声屏障来降低。吸声型声屏障降噪效果与吸声材料特性有关。为此选取了3种不同的声屏障吸声材料,利用绕射声衰减的理论计算方法和统计能量法,对比分析不同吸声型声屏障的降噪效果。研究结果表明:不同吸声材料的加入对于声屏障降噪的效果均有一定的影响,相互之间的差值约为5~6dB。  相似文献   

14.
沪杭高铁半封闭式声屏障声学设计研究   总被引:2,自引:0,他引:2  
从声学设计目标值的选择、声屏障形式的选择及声屏障的降噪效果等方面分析了沪杭高铁半封闭式声屏障声学设计方法,并与实际测量结果进行了对比分析.实际测量结果表明,半封闭式声屏障的降噪效果在11.5dBA,达到了设计的声学设计目标值.同时指出理论计算的半封闭式声屏障的降噪效果明显偏高,而模型试验和类比测量的降噪效果与实际测量的结果基本吻合.  相似文献   

15.
宁波轨道交通1号线一期工程高架线开展了无声屏障、全封闭声屏障、全封闭声屏障+梯形轨枕和全封闭声屏障+道床垫浮置式整体道床工况下的噪声对比测试试验.在各测量断面处布置7个噪声测点,并得到12.5~20000 Hz频段的噪声声压级与频谱曲线,分析各工况下噪声频谱特性与降噪效果.结果表明:仅采用全封闭声屏时,噪声源强处降噪效果最佳,且降噪效果随水平距离的增大呈衰减趋势;在全封闭声屏障的基础上采用梯形轨枕或道床垫浮置式整体道床后各测点(测点l除外)处降噪效果进一步增大,减振轨道确保了全封闭声屏障的降噪效果;减振轨道能有效减小桥梁结构噪声,但同时也增大了轮轨噪声;全封闭声屏障+道床垫浮置式整体道床的降噪效果优于全封闭声屏障+梯形轨枕.  相似文献   

16.
高速铁路桥梁声屏障插入损失五声源预测模式研究   总被引:4,自引:1,他引:3  
研究一种高速铁路桥梁声屏障插入损失的五声源预测模式,可应用于时速300 km以上高速铁路声屏障声学设计。对高速铁路噪声源进行现场辨识测试,分析其声源特性,将高速铁路噪声源简化为轮轨区、车体下部、车体上部、集电系统、桥梁结构5个等效噪声源。根据单声源模式的声屏障插入损失预测公式,结合不同车速下声源等效频率和噪声贡献量,同时考虑桥梁翼板对声传播的影响,形成五声源模式的声屏障插入损失预测公式。采用该方法计算2.15 m声屏障插入损失并与现场测试数据对比,结果显示距离线路25~50 m处受声点插入损失预测结果与实测结果吻合度最高。  相似文献   

17.
基于Lighthill声类比理论分别求解高速列车气动噪声的产生和传播过程,首先由RNG k-ε湍流模型求得流场的稳态计算结果,之后采用大涡模拟和FW-H方程对比直立与半圆形声屏障降噪性能的差异,通过建立包含3节车编组的CRH380A型高速列车和2种声屏障在内的仿真模型,研究声屏障几何形状的改变对声学性能及降噪能力产生的影响。结果表明:圆心角为180°的半圆形声屏障在测点处的平均插入损失较大,同时对气动噪声的降噪需求有着良好的匹配,综合声学性能较传统的直立声屏障更优;缩小圆心角会导致半圆形声屏障的降噪能力相应降低,其插入损失在圆心角由180°减至120°的过程中呈现明显的下降趋势,之后的降幅相对较小,圆心角为30°的半圆形声屏障降噪效果已与等高的直立声屏障类似。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号