首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
为了研究高速铁路高架桥线路直线和曲线段的环境振动衰减规律及其频谱特性,以广深港高铁某高架区段为研究对象,测试300 km/h速度下直线段和曲线段的振动响应,通过引入铅锤向Z振级进行综合评价,分别对直线和曲线段的桥墩和桥梁跨中断面的振动特性及衰减规律进行对比分析,结果表明:(1)曲线段的振动源强大于直线段的振动源强,桥墩处大6 dB,跨中处大3 dB;(2)当距中心距离较近时,对环境振动影响较大的主要频率为25~80 Hz的高频部分,当距离较远时,环境振动的优势频率在10 Hz左右;(3)在45 m处,直线桥墩断面、曲线跨中和桥墩断面的主频振级相比30 m处都有所增大,且主频都为低频。  相似文献   

2.
基于2.5维有限元法和虚拟激励法进行地铁交通场地随机振动特征分析。基于虚拟激励法由轨道不平顺功率谱得到动态轮轨力功率谱,将其作为轨道—隧道—地基土系统2.5维有限元模型的外部激励,计算得到地面随机振动响应,分析车速和轨道不平顺等级对地面随机振动特征的影响。结果表明:地面振动位移受车辆轴重控制,受轨道不平顺随机激励影响较小;地面振动速度和加速度主频随地铁车速的增加显著增大,轨道不平顺等级不改变地面振动响应的频谱分布;轨道不平顺等级降低和地铁车速增大造成地面随机振动响应的离散度和Z振级最大值显著增加;轨道不平顺随机激励下,地面振动速度和加速度上限值以及Z振级最大值在垂直于地铁运行方向的衰减出现明显波动,距轨道中心线60 m外衰减趋势变缓。  相似文献   

3.
为研究“房桥合一”轨道层结构车致振动特性与传播规律,选择天津西站轨道层结构,测试客、货列车通过时的轨道层结构振动加速度响应.16种工况共128组数据的分析结果表明:在列车低速通过时,“房桥合一”轨道层结构的加速度振级范围为83~113 dB;同一测点在相同振源距离、相同车型下,其振级随车速的增加而增大;在相同车速和车型下,测点的振级随距振源距离的增加而呈非线性减小,减小程度随距振源距离增加而降低.车速对“房桥合一”轨道层结构的主要车致振动响应频率的影响不大;距振源越近,频谱峰值越大;车速越高,频谱峰值越大.客、货列车对“房桥合一”轨道层结构的激振频率不同;货车对结构有低频激励影响,且高频激振不稳定;客车高频激励较为稳定.采用点振源函数拟合“房桥合一”轨道层结构的车致振动响应,获得了可以表征“房桥合一”轨道层结构车致振动传播规律的振动衰减曲线.  相似文献   

4.
地铁运营所产的振动噪声问题一直是其发展过程中亟待解决的难题,不同减振措施、不同地质条件下轨道结构产生的振动波传播及衰减规律也存在较大差异,为探究以富水砂卵石为主的地铁不同减振轨道结构源强及振动随距离衰减的特性,文章对成都地铁GJ-Ⅲ减振扣件、钢弹簧浮置板、一般轨道结构和浮轨式扣件4种轨道结构形式隧道壁振动源强和地面振动响应进行现场同步测试,并从频域、时频域及地面Z振级等方面对获得的数据进行分析。结果表明:GJ-Ⅲ减振扣件、浮轨式扣件和钢弹簧浮置板3种减振轨道形式均可有效降低隧道壁源强和地面振动,三者减振效果钢弹簧浮置板大于浮轨式扣件大于GJ-Ⅲ减振扣件;环境振动的主频在经过土体介质后一般不会发生改变,轨道结构形式是决定环境振动频域分布的主要因素,地面环境振动随传播距离的衰减主要体现在各组断面的主频上而加强区测点的频域加强频带为50~80 Hz;4 Hz以下的低频振动和50 Hz以上的高频振动经过土层介质后均有较为明显的衰减。  相似文献   

5.
为了研究高速铁路列车在路基段运行时引起的周边环境地面上的竖向振动特性和传播规律,进行现场试验和数值分析。实测结果表明:高速铁路路基段周边环境地面不同距离测点的Z振级均小于78 d B,振动并没有随距离衰减,只是在距离外轨30~60 m范围内有减弱;距离线路外轨30 m外的环境振动的频谱主峰频率以小于10 Hz的低频为主;振动频谱中并没有显现出高频振动衰减快、低频振动衰减慢的规律。基于FLAC3D的数值分析结果与实测值吻合良好,验证了模型的合理性,并分析群桩加固区对振动的影响,结果表明:在路基段采用群桩基础对地基进行加固,可有效降低高速铁路列车运行对路基段周边环境振动的影响。  相似文献   

6.
建立了车-线-隧道耦合动力学模型,输入实际的列车、轨道、隧道承力结构参数,获得地铁列车运行时的隧道承力结构动态激励。在此基础上,综合运用有限单元法和无限边界元法,建立了隧道-土体-建筑动力耦合模型,分析隧道周围土体及沿线建筑物的受振特性,探析地铁列车振动对环境的影响规律。结果表明:地铁列车运行引起周围环境的二次振动为低频振动,且主要为竖向振动和横向振动;列车通过时,地面竖向振动最大值出现在距离隧道中心线10 m处,竖向振动加速度除了在距离隧道中心线45 m点出现反弹外,其他各点的振动加速度幅值基本上都是随着距离的增加而逐渐减小;随着传播距离的增加,较高频率的振动成分幅值衰减较快。  相似文献   

7.
以南昌地铁1号线的某标段工程为研究背景,建立曲线地段的轨道—隧道—大地三维有限元模型,同时考虑竖向和水平向轮轨作用力的影响,计算得到了地铁列车通过曲线时诱发的环境振动。计算结果表明:当曲线的半径一定时,地铁在曲线地段运行引起的钢轨、隧道壁和地面振动响应均与列车行驶速度密切相关;曲线地段地面水平向振动加速度级要大于竖向,平均高出5 d B;水平向和竖向振动加速度级均表现出随着与隧道中心线间距离的增加而呈波动性衰减特性,频率越高振动加速度级衰减的速度越快;环境振动在衰减过程中都会出现放大区,竖向和水平向的振动放大区出现的位置有所不同,但振动放大区的主频差别不大。  相似文献   

8.
我国地铁环境振动现状及控制措施   总被引:20,自引:0,他引:20  
通过对我国北京、上海、广州等城市既有地铁线路两侧环境振动实测结果及理论分析,得到:我国地铁隧道壁处的垂向Z振级为75~110dB;距离隧道中心线10~50m范围内,振动水平可达到GB10070—1988《城市区域环境振动标准》中居住区域标准限值的要求;同时给出我国地铁既有振动控制措施效果比较,其中浮置板道床减振效果最佳,其次为轨道减振器,各种弹性扣件也有一定减振效果。  相似文献   

9.
在地铁区间为小半径曲线、地面无干扰振源并可以布置高密度测点的珍贵测试条件下,采用高灵敏度数据采集与分析系统,对北京地铁某曲线段进行地面振动测试。根据测试数据,研究地铁列车通过曲线段时引起地面振动加速度的时域和频域内传播规律。结果表明:在距离隧道中心线100m范围之内,地铁运营引起地面振动加速度的时程峰值主要在10-2 m·s-2量级,远大于背景振动下的10-4 m·s-2量级;在距离隧道中心线50m范围之内,水平振动强度是竖向振动强度的2~4倍,建议在涉及曲线段地铁的环评中应同时考虑竖向振动和水平振动的影响;水平振动加速度的主要频率成分为30~120Hz,建议在关于曲线段地铁的试验、测试和模拟中应选取较宽的频率分析范围;地面振动加速度频谱幅值随着与隧道中心线间距离的增加而呈波动性衰减。  相似文献   

10.
对京沪高速铁路丹昆特大桥桥墩及周围自由场地进行振动测试,研究运行速度300 km/h的高速列车通过高架简支梁桥的环境振动水平及振动衰减规律。研究表明,高铁列车运行引起的地面振动在桥墩附近10 m范围内的近地场振动衰减较快,且存在振动反弹区;40 m以外的远地场振动衰减较为平缓。从1/3倍频程分析,地面竖向振动的优势频段为25~60 Hz,但该频段振动衰减较快;20 Hz以下的分频振动衰减较慢,且通常低于一般减隔振措施的减振频率范围,应引起足够重视。高速铁路高架桥引起的周围环境振动整体较小,在距离轨道中心线40 m以外,地面的竖向加速度满足特殊住宅区的振动要求。研究成果可为高速铁路高架桥减隔振设计及环境振动评估提供数据参考。  相似文献   

11.
更换减振扣件前后地铁运营引起地面振动的研究   总被引:2,自引:0,他引:2  
选择北京地铁5号线宋家庄—刘家窑区段,在更换减振扣件前后2次测试地铁正常运营引起的地面水平及垂向振动加速度,对其进行频谱分析;建立轨道—隧道—土层的三维有限元模型,利用实测数据,研究垂直于地铁线路方向不同距离的振动加速度响应规律。结果表明:地铁线路位于曲线段时,地面水平与垂向振动加速度峰值和有效值基本相等;在安装DTⅥ2扣件的轨道地段,地铁列车运营引起的地面主要振动频率为40~80 Hz,在安装Vanguard扣件的轨道地段为20~40 Hz,说明Vanguard扣件有较突出的减振效果;随着距地铁隧道中心线距离的增加,地面振动加速度响应表现出衰减的趋势,在离开隧道轴线一定距离处,存在地面振动加速度放大区,水平和垂向振动加速度放大区的位置有所不同。  相似文献   

12.
以地铁隧道内常使用的DT VI2型扣件为研究对象,采用车辆—轨道垂向耦合随机振动频域分析模型与有限元谱分析模型组合求解法,研究扣件胶垫阻尼的频变性对地铁隧道环境振动的影响。结果表明:与常量的扣件胶垫阻尼相比,随频率变化的扣件胶垫阻尼对地铁隧道环境低频振动影响很小,但会增大其分频最大振级,同时还会降低其分频最大振级以上频带内的振动水平,并且随着频率的持续提高,振动级的下降幅度也会越来越大;尽管可以通过单纯降低胶垫阻尼系数提高地铁隧道环境振动频域的预测精度,但难以保证对各频段振级均有较高的预测精度,因此,如不考虑扣件胶垫阻尼的频变性,易低估地铁隧道环境振动的分频最大振级,同时会高估主频段以上的振动水平。  相似文献   

13.
高速铁路环境振动特性研究   总被引:3,自引:0,他引:3  
在对我国高速铁路环境振动实测的基础上,分析了我国高速铁路环境振动特性。实测分析结果表明:对于350km/h客运专线,高速动车组运行时铁路环境振动主频出现在40Hz左右;对于250km/h客运专线,高速动车组运行时铁路环境振动主频出现在25Hz左右;货物列车运行所产生的铁路环境振动,其主频大多出现在12.5Hz左右。地面环境振动传播规律为近场范围内距线路距离加倍,环境振动衰减2~3dB。列车引起的地面振动随车速的提高而增大,与日本新干线的桥梁及其周围地面的振动进行的测试结果基本一致。  相似文献   

14.
为了研究地铁隧道内浮置板轨道的实际减振效果,以我国某地铁线路的隧道段为研究对象,测试了普通道床轨道、重量级和中量级浮置板轨道产生的振动响应,分别在时域和频域内对各种轨道的振动特性进行对比分析,并采用Z振级进行综合评价,结果表明:轨道板和隧道壁的主要响应频段在80 Hz附近;重量级和中量级钢弹簧浮置板道床振动响应有5.3 dB的差异;各减振断面的隧道壁振动均满足相关规范的要求。  相似文献   

15.
为研究高速铁路路堑在高速列车荷载下的地面垂向振动随距离传播规律,对宝兰高铁路堑段地面垂向振动进行现场试验,对现场试验的数据从时域和频域两个方面进行分析揭示地面垂向振动加速度响应特征。结果表明,路堑垂向振动加速度在距离线路中心线12.5~40 m总体呈衰减趋势,靠近线路中心线处12.5~20 m处垂向振动加速度衰减较快,较远处20~40 m处衰减速度较慢。地面垂向振动加速度在各测点处由60 Hz及100 Hz附近的频率成分主导,随着距离的增大,110 Hz左右的高频成分衰减很快,到了距线路中心线20~40 m,振动加速度在60 Hz左右的频率成分占优。依据现场工况,建立了列车-轨道-路堑-地基数值分析模型,并通过数值试验的方法,设置不同的场地速度特性,分析不同场地条件对路堑振动响应的影响。数值分析表明,场地速度特性(覆盖层与下卧层模量比、覆盖层厚度)是影响地面振动剧烈程度的重要因素,地基覆盖层与下卧层模量比越大,地面振动越强烈,模量比一定,覆盖层厚度越小,地面振动越大。  相似文献   

16.
为探究黏弹阻尼道床阻尼厚度对隧道及地表振动衰减特性的影响,为工程设计提供理论支持。利用ANSYS建立土体-隧道-道床平面有限元模型,分析在5~25 Hz频率荷载的作用下,整体道床和黏弹阻尼道床在隧道结构中的振动响应,并分析这两种道床下地表距离隧道中心线不同距离的振动加速度的衰减特性。结果表明:荷载频率小于10 Hz时,在地表距离隧道中心25 m左右,振动有明显的放大区域;荷载频率为10~20 Hz,振动加速度随道床阻尼层厚度降低,阻尼层越厚振动衰减越明显;随着黏弹阻尼道床阻尼层厚度增加,隧道衬砌底部振动加速度有效值依次降低,隧道壁竖直方向振动衰减更加明显,阻尼层每增加2 mm,振级降低1~4 d B。  相似文献   

17.
基于高速列车动荷载激励引起的无砟轨道-路基-黄土地基体系的地面振动问题,对宝兰客专DK993+110处路堤区段地面振动进行试验研究和数值分析。对试验数据从时域和频域2个方面进行分析,研究不同车型的动荷载引起地面垂向振动加速度在黄土地基中的衰减规律,研究结果表明;在距离线路中心线10~24m衰减较快,随着距离增大,距离线路中心线24~42m衰减速度趋于平缓,且在30~42m处各型车引起地面振动均出现了振动反弹增大现象。建立车辆-轨道-地基系统模型,研究列车动荷载作用下的地面响应,发现与实测结果吻合良好,验证模型的合理性与计算的正确性,依据不同场地速度结构,通过改变地基介质模量比和覆盖层厚度的方式,分析地基介质模量比和覆盖层厚度对振动反弹增大的影响。分析车速对地面振动的影响,发现地面振动随车速增大呈增大趋势,且不同车速列车引起振动反弹区域也有一定差异。按《城市区域环境振动标准》评价该处地面振动Z振级,回归分析得出各型车引起Z振级符合对数衰减规律,但在振动反弹区30~42m处拟合效果较差,表明拟合公式适用范围应当限定在10~30 m之间。  相似文献   

18.
对南昌西站综合交通枢纽进行模型仿真,从时域和频域的角度分析南昌地铁4号线对该站的振动影响。研究南昌地铁4号线在不同行驶速度、不同隧道埋深下的振动传播规律及频率分布特点。研究结果表明,在地铁列车荷载作用下,南昌西站的振动幅值随着振源距离增大而减小,在地面距离轨道中心线24~36 m、60~72 m的区域出现振动放大区。车站不同结构层的振动频率分布特性基本一致,主要集中在0~60 Hz范围内。车站结构横向环境振动水平比竖向环境振动小,竖向振动响应与横向、纵向的振动响应频域分布较为一致。车站结构关键点出现最大振级的频率随着结构高度的增大逐渐向低频移动。  相似文献   

19.
采用嵌入式环境振动智能监测系统,获得了紧邻地铁车站的地下商业建筑楼板铅垂向加速度时程谱与傅里叶谱。对优势频率振动能量衰减规律进行了拟合分析,获得了二次振动影响范围;通过铅垂向Z振级计算,对该地下建筑环境振动状况作出了评价,并给出了振级随距离衰减关系的数学模型。研究成果可为类似工程提供参考依据。  相似文献   

20.
研究目的:不同减振扣件对地铁隧道-地表环境振动的减振效果特性有所差异,列车运行引起的隧道和地表的振动在时域和频域上有较大区别,目前对减振扣件减振效果评价多采用不同断面进行对比分析,但其结果会受到隧道断面周围结构的影响。基于此,本文通过对普通扣件和减振扣件下列车运行引起的隧道结构及地表振动进行现场实测分析,并建立车辆-轨道-隧道-大地耦合动力分析数值模型,研究减振扣件对隧道结构-地表的减振效果。研究结论:(1)减振扣件能有效控制道床和隧道壁上的振动响应,当采用减振扣件后,道床上峰值变小且峰值出现频段向低频偏移,隧道壁上减振扣件在卓越频率范围内出现振动放大现象;(2)地面测点的振动加速度峰值和Z振级随距离振源的位置增加呈现出减小的趋势,但是在15~30 m范围内出现增大的现象,说明在该区域范围内出现振动放大的现象,但放大区间有所不同,应根据具体工程选择合适的扣件;(3)地面同一测点振动加速度峰值和Z振级呈现出W形的变化趋势,因此在进行地面振动控制时应充分考虑控制点所处位置,根据具体情况采用合理的控制措施;(4)本研究成果可为轨道交通中隧道和地表振动控制措施选择提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号