首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
通过三维大涡模拟(LES)数值计算方法,对横风中不同行使工况下高速列车的非定常空气动力特性进行研究。计算得到各工况下高速列车车体所受非定常空气动力的时域特性、频域特性、脉动特性,以及列车周围非定常流动结构。分析结果表明,横风中高速列车所受空气动力存在明显的非定常性。从各工况高速列车所受空气动力脉动的均方根值来看,各节车的非定常现象基本随着合成风向角的增加而增大。在高速列车所受非定常空气动力的频域特性方面,其峰值频率集中在斯托劳哈尔数0.05~0.2范围内,这一范围对应实车情况的频率为0.5 Hz~2 Hz,这与高速列车系统本身存在的一些固有振动频率接近,存在由横风引起高速列车系统共振、降低高速列车行驶安全性乃至引发高速列车脱轨倾覆的可能性。  相似文献   

2.
基于大涡模拟的高速列车横风运行安全性研究   总被引:1,自引:0,他引:1  
结合高速列车空气动力学和多体系统动力学,研究横风对高速列车运行安全性的影响.首先采用大涡模拟计算方法,研究了不同横风风速下高速列车非定常气动载荷的时域及频域特性,列车周围流场结构及相应的非定常流场特性.然后建立高速列车多体系统动力学模型,将得到的气动力作为外加载荷作用于列车上,研究了不同横风风速下定常气动力和非定常气动力对直线上高速列车运行安全性的影响特性,计算结果表明,与定常气动力相比,作用于车身上的非定常气动力使列车的振动加剧.最后参照高速列车的安全运行标准,对高速列车的安全运行进行分析,为横风下高速列车的安全运行提供参考.  相似文献   

3.
针对风洞试验中通过天平测量列车气动力存在的缺陷,尝试通过测压积分获得列车气动力以提高脉动气动力测试精度,并对来流均匀的侧风作用下的CRH2列车非定常空气动力特性进行分析。研究结果表明,当列车表面风压测点数量适当时,测压积分可获得与天平测力精度相当的定常气动力;即使是在均匀来流作用下,列车受到的气动力也表现出明显的非定常特性,极大气动力约为均值的1.7倍;0~10 Hz低频段最大谱值发生在90°风向角,最小谱值则发生在0°风向角,10 Hz以上高频段谱值分布情况则恰好相反,当风向角小于60°时,0~10 Hz低频段能量占总能量的比重小于50%。  相似文献   

4.
应用计算流体动力学仿真获得了高速列车在3种典型横风环境下车体所受定常气动力,然后运用车辆多体动力学分析软件,对高速列车在通过曲线过程中所受横风下具有定常特性的气动力作用对其行驶安全性的影响进行了研究,确定了典型大风环境下处于危险状态的车轮,并通过试验设计方法,得出气动力6分力中气动升力和侧滚力矩对高速列车行驶安全性的影响最大.  相似文献   

5.
研究了不同横风风速下,列车在通过曲线道路时空气动力性能并进行仿真分析。根据计算得到的数据,分析了不同横风速度时相应的车体纵、横向气动力变化和列车的倾覆系数。参照有关高速列车曲线通过稳定性评定标准,给出了9级横风风速下单轨列车安全运行的速度限值,为今后单轨列车在横风作用下的运行安全性提供一定的依据。  相似文献   

6.
为了研究非定常气动力荷载对桥上列车行车安全性和舒适性的影响,结合有限元软件ANSYS和多体动力学软件SIMPACK,建立列车-轨道-桥梁三维多体系统模型,计算风-列车-桥梁耦合系统的动力响应;对比分析定常与非定常气动力荷载作用下桥上列车的行驶安全与舒适性,研究非定常气动力荷载作用下不同横向风速对列车行驶安全的影响。研究结果表明:列车行驶速度为200~300km/h,无风荷载情况下,各安全性与舒适性指标值均满足要求且均小于风荷载作用。横风作用下平均风速为20 m/s,考虑非定常气动力荷载的影响不仅会使列车行驶安全评估结果更安全,还会使列车舒适性评估结果偏于保守。平均风速不超过20 m/s,车速控制在250 km/h,桥上列车行车安全、舒适性均满足要求,且平稳性等级可达到"良好"以上。通过对不同横向风速下桥上列车行驶安全分析,给出桥上列车安全行驶的阈值,为列车的安全运营提供依据。  相似文献   

7.
横风强度对平原上集装箱列车横向稳定性的影响   总被引:1,自引:0,他引:1  
应用平原大气边界底层速度型,对平原上运行速度为120 km/h的集装箱列车在横风角为90°8~12级横风下的空气动力载荷进行数值研究.研究对象分别为机车牵引装载着12.192 m(40英尺)集装箱的3辆NX70型平车和3辆X6K型平车的计算模型.结果表明,平原上X6K型平车装载集装箱所受升力的平均值约为NX70型平车集装箱的25%左右;2个列车模型中位置相同的集装箱所受侧向力基本相等,集装箱所受翻滚力矩约为NX70型平车集装箱的60%左右.铁路集装箱车辆的设计对其在平原上装载集装箱所受升力的影响很大,对集装箱所受侧向力的影响很小;集装箱平车底架的大面积空隙有利于列车底部和集装箱底部之间的空气流通,可有效降低集装箱所受升力和翻滚力矩;合理的铁路车辆设计可在一定程度上提高平原上集装箱车辆运行的横风稳定性.  相似文献   

8.
基于ALE方法的列车横风绕流动力学分析   总被引:2,自引:0,他引:2  
利用有限体积法对横风作用下列车周围的空气流场进行计算.结合车辆-轨道耦合动力学,采用任意拉格朗日-欧拉(ALE)方法处理列车与空气间存在的运动边界,实现了车辆系统动力学与计算流体力学之间的结合.以某国产客运列车为例,计算列车在20 m/s的横风作用下以160 km/h的速度运行时的动力学响应,给出列车周围的流场分布;分析了考虑与不考虑风-车之间流固耦合效应时,作用在车辆上的气动力和气动力矩的变化情况.结果表明,流固耦合效应对车体摇头力矩的影响比较大,而对于车体垂向、横向位移和加速度的影响甚微.  相似文献   

9.
受电弓系统的受流特性对高速列车的安全运行至关重要,受电弓的非定常气动特性严重影响受电弓系统的受流状态.本文采用脱体涡模拟(DES),对高速列车受电弓的非定常气动特性进行深入研究.研究表明:受电弓脱体涡的强度、脱落频率对受电弓气动升力系数影响很大.无横风条件下,受电弓受到的升力为负升力,列车运行速度为350 km/h时,其升力的波动幅度达110%,速度增加,其波动幅度增大,频率增大,受电弓的横向受力很小;横风条件下,受电弓的升力振动频率与无横风时有很大不同,升力系数变比不大,侧向力随横风速度的增大而增大.研究结果为高速受电弓的优化设计提供了依据.  相似文献   

10.
平原上不同长度集装箱列车横风载荷的数值研究   总被引:3,自引:3,他引:0  
对在横风角为90°的10级横风作用下平原上以120 km/h速度运行的集装箱列车的空气动力载荷进行数值研究。采用平原大气边界底层速度型模拟运行环境,研究对象包括5种模型:机车分别牵引2辆、3辆、10辆载有集装箱的平车的列车模型以及1辆、3辆集装箱平车的周期边界模型。结果表明,机车尾流会削弱第1辆车所载集装箱的升力,第2辆车所载集装箱受到的升力最大;前车尾流导致后车的来流风向角和侧向力依次减少,第1辆车集装箱所受侧向力最大;第2辆车集装箱所受翻滚力矩最大,前3辆车集装箱所受翻滚力矩值比较接近;随列车长度增加,气动载荷在达到其最大值后呈逐渐下降趋势,尾车的绕流作用导致尾车集装箱的气动载荷迅速减少。用周期边界模型模拟长集装箱列车中段的空气动力载荷,其集装箱所受翻滚力矩约为整列车中最大值的80%~84%。  相似文献   

11.
为研究不同风向角下高速铁路列车气动力特性,分析流线型列车周围流场结构差异对列车气动力影响,以高速铁路典型CRH2列车为研究背景,采用风洞试验和数值模拟相结合的研究手段对不同工况下列车气动力和流场结构进行分析。研究结果表明:测压和测力试验结果具有很好的一致性,数值模拟与风洞试验结果吻合良好,可用来分析风向角对列车气动特性的影响;分析得出头车和中车的风压分布和气动力变化规律显著不同,随着风向角的增大,头车侧力系数和升力系数先增大后减小,在风向角为60°左右达到最大值,中车侧力系数和升力系数一直增大,列车绕流状态具有明显的三维特性,不同风向角下气流绕列车呈不同绕流形式,在小于60°风向角下,列车绕流场主要呈流线型结构绕流特性,而大于60°风向角下,列车绕流场主要表现为钝体绕流特性,两种不同绕流状态导致列车气动力特性差异。  相似文献   

12.
本文以某钢桁梁斜拉桥为原型,采用数值模拟方法研究一种叶片式导风屏障对横风环境下列车周围流场、列车气动性能、桥梁气动性能的影响。结果表明:(1)叶片式导风屏障改变了桥梁内部的风场环境,减小了列车周围风速,风速最少减小20%;(2)高度为3 m时,列车周围的风速最低,列车三分力系数最优;(3)透风率为20%~25%时,列车周围风场受回流影响小,列车三分力系数中仅升力系数增大;(4)导风角为20°时,列车、桥梁三分力系数最小,且叶片式导风屏障自身承受的风荷载最小。综合考虑行车安全和建造成本,叶片式导风屏障的最佳高度为3 m,最佳透风率为20%~25%,最佳导风角为20°。  相似文献   

13.
建立了横风环境中高速列车运行于复线路堤上的三维空气动力学模型,开展了路堤高度和列车在复线路堤上的位置对高速列车气动性能影响的数值计算与对比分析。结果表明,路堤上列车周围的气流流速大于平地上的气流流速,导致路堤上列车气动性能较平地上恶劣;路堤高度和横风速度对高速列车在下风线上和上风线上气动性能的差异有重要影响;列车在下风线上运行比在上风线上运行更容易发生倾覆。  相似文献   

14.
为研究城市轨道列车气动特性以及底部部件对列车气动特性的影响,针对三节车模型进行简化,保有底部部件较高完整性,采用Realizablek-ε湍流模型预测列车周围流场。数值计算结果表明:列车气动阻力分布呈现出尾车阻力最大,占三节车总阻力的48%;中间车阻力最小,占总阻力的14%。其中转向架分别占头车、中间车和尾车总阻力的15.1%,56.4%和23.0%。车底设备分别占头车、中间车和尾车总阻力10.5%,10.3%和8.6%。因此对于头车、尾车采取减阻方案首先是采用流线型头型的方式减少流动分离现象。对于中间车减阻方法则要首先针对底部部件,采取密封舱的方式减少其产生的压差阻力。通过优化列车头型发现列车气动特性得到明显的改善,其中列车头车、中间车和尾车阻力分别为原始情况下的61.4%,70.1%和58.3%。在流线型外形基础上进一步稳定列车底部区域流场也有效改善了底部区域部件气动特性。  相似文献   

15.
基于成熟的明线上高速列车气动噪声计算模型和可压缩大涡模型,考虑声学无反射边界条件,利用计算流体力学软件Fluent建立无限长隧道内高速列车气动噪声计算模型,对比分析高速列车在明线上与隧道内运行时的流场组织结构和气动噪声源。结果表明:高速列车在明线上与隧道内运行时具有类似的流场结构和气动噪声源分布规律,但隧道内的流场结构尺度与强度、气动噪声源强度均比明线上大;车速为350 km·h-1时,隧道内头车排障器尖点扰动区的速度幅值约为明线上的1.2倍,列车尾流区长度约为明线上的1.7倍,整车、1位转向架、头车流线型车底及中间车上部的等效声源声功率分别约为明线上的3.2倍、1.6倍、2.7倍和4.2倍;隧道内活塞效应并不是在全频率范围增加等效声源声功率,而是在包含峰值频率较狭窄的频率范围显著地增加等效声源声功率。  相似文献   

16.
将空气流场视为黏性、可压缩的非定常流,对高速列车和跨线桥梁模型进行适当简化,以沪昆线上某(112+80+32)m预应力混凝土独塔斜拉桥为例,基于大型计算流体力学软件Fluent,采用滑移网格法建立高速列车和跨线斜拉桥流场计算模型。分析了列车以350km/h速度从斜交跨线斜拉桥下穿过时,桥梁底面压强分布情况。通过积分换算出列车气动效应对桥梁产生升力、阻力和扭矩时程。将该气动力时程施加至斜拉桥空间动力模型,研究运营阶段斜拉桥动力响应。研究表明,高速列车尾流对斜拉桥的气动力作用大于列车头,列车正上方梁体所受气动力最大;列车风对运营阶段斜拉桥影响极小,可忽略不计;若跨线桥为质量惯性较小的钢桥,列车气动力对其影响仍需进行相应研究。  相似文献   

17.
高速列车车头的气动噪声数值分析   总被引:1,自引:0,他引:1  
随着列车运行速度的提高,列车气动噪声变得越来越明显,降低气动噪声已成为控制高速列车噪声的关键之一。本文对高速列车车头气动噪声进行数值分析。首先,建立高速列车三维绕流流场的数学物理模型,分别利用标准k-ε湍流模型和大涡模拟计算高速列车的外部稳态和瞬态流场。然后,基于稳态流场,利用宽频带噪声源模型计算高速列车车身表面气动噪声源;基于瞬态流场,分析车身表面脉动压力的时域及频域特性;利用Lighthill声学比拟理论,计算高速列车远场气动噪声,分析远场气动噪声的时域及频域特性。本文对研究和控制高速列车气动噪声具有一定意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号