首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
一种确定弹性支承块式无碴轨道刚度的新方法   总被引:5,自引:4,他引:1  
为确定弹性支承块式无碴轨道的合理刚度,提出以轨道应力与变形、动态轨距扩大及轨道动力响应参数为指标确定轨道刚度的方法。该方法运用有限单元法,建立弹性支承块式无碴轨道应力与变形、动态轨距扩大及动力响应3种计算模型,分析刚度对轨道应力与变形、动态轨距扩大及动力性能的影响。结果表明:增大钢轨支点刚度能减小钢轨弯曲应力和挠度,增大块下胶垫刚度能减小支承块位移;扣件刚度是影响动态轨距扩大的主要因素;增大扣件刚度能使支承块的加速度迅速增大。最后提出200 km/h弹性支承块式无碴轨道的合理刚度。  相似文献   

2.
以DZⅢ型扣件为研究对象,建立车辆-轨道垂向耦合Timoshenko梁模型,计算钢轨垂向振动加速度,并与一地铁线实测结果进行对比,分析扣件胶垫老化后刚度的变化对轨道振动的影响。结果表明:计算结果和实测结果基本吻合;随着胶垫老化,胶垫刚度从30 kN/mm增加到60 kN/mm时,钢轨垂向振动加速度没有明显的变化;胶垫刚度从30 kN/mm增加到90 kN/mm时,钢轨垂向振动加速度最大值增加了112%,即胶垫刚度增大2倍以上时,钢轨振动加速度所受影响较大;当钢轨振动中心频率125 Hz时,胶垫刚度变化对钢轨振动的影响较小;当钢轨振动中心频率在125~1 500 Hz时,胶垫刚度变化对钢轨振动的影响明显,加速度振级变化最大值可达14.22 dB;随着胶垫刚度的增大,轮轨力的变化比较明显,轮轨脱离的时刻明显增多。  相似文献   

3.
胶垫是轨道结构中的重要部件,起着缓冲轨道结构剧烈振动并保护轨下结构的重要作用。现场调研发现,随着轨下胶垫的老化,其减振与弹性性能逐渐降低。为得出运营状态轨下胶垫老化前后刚度的变化规律,本文选取现场老化胶垫进行室内常温状况下的静刚度测试,并基于其试验结果,利用有限元软件ABAQUS建立有限元动力学模型,对比分析胶垫老化对轨道结构动力特性的影响。试验得到2组实际运营地段无砟轨道老化胶垫平均刚度分别为144,79 k N/mm,均大于新胶垫刚度40 k N/mm。理论计算结果表明:当胶垫刚度分别为40,79,144 k N/mm时,钢轨垂向位移最大值分别为0.95,0.74,0.63 mm,而扣件垂向力最大值分别为32.1,39.2 k N。  相似文献   

4.
基于多体动力学与有限元法,利用多体动力学软件Simpack建立箱型梁及U型梁的三维车轨桥耦合振动仿真模型,对列车过桥时箱型梁、U型梁及轨道结构竖向和横向振动进行分析,得到桥梁振动空间分布情况,进一步研究扣件、板下弹性支承与桥梁支座参数对箱型梁和轨道结构的振动规律,并给出各参数的合理取值范围。研究结果表明:列车以80 km/h的速度过桥时,箱型梁与U型梁结构振动空间分布情况差异明显,应重点关注钢轨、轨道板以及箱梁翼板与腹板的竖向振动,U型梁翼缘处横向振动不容忽视;增大扣件刚度能明显减小钢轨变形,但过大的刚度会使箱梁与轨道结构的振动加剧,建议扣件竖向刚度取值为20~50 MN/m;增大板下弹性支承刚度可明显减小轨道板的振动,但过大的刚度会加强钢轨振动,建议板下弹性支承竖向刚度取值为(1.0~1.5)×10~3 MN/m;增大支座竖向刚度在一定范围内可减小轨道板与箱梁的振动,但过大的支座刚度反而会使桥梁振动加剧,不利于减振,建议支座竖向刚度取值为(3~4)×10~3 MN/m。  相似文献   

5.
轨下支承参数对钢轨声振特性影响研究   总被引:1,自引:0,他引:1  
钢轨辐射噪声是轮轨噪声的主要组成部分,轨下支承参数对钢轨的振动与声辐射有着较大的影响。为研究轨下支承参数对钢轨声振频域特性的影响,基于FEM/BEM方法,建立钢轨振动力学模型和声学边界元模型,分析轨下扣件支承间距、支承刚度和支承阻尼对钢轨声振特性的影响规律。结果表明:扣件支承间距对钢轨的声振特性影响不明显;在20~200 Hz之间,合理大小的扣件支承刚度可以有效地减少钢轨振动与声辐射;合理大小的扣件支承阻尼可以有效地减少钢轨振动的频率范围为20~2 000 Hz,合理大小的扣件支承阻尼可以有效地减少钢轨声辐射的频率范围为100~1 000 Hz;扣件支承阻尼对钢轨声振特性影响的频域明显要宽于扣件支承刚度。  相似文献   

6.
为满足160 km/h地铁设计对轨道减振性能的要求,提出了钢轨嵌入式钢弹簧浮置板轨道结构设计方案,并研究了钢轨支承形式及轨下连续支承参数对轨道结构减振性能的影响。结果表明:钢轨支承形式(离散支承、连续支承)对钢轨和轮对振动加速度影响较小;随着轨下连续支承刚度和阻尼的降低,轮轨力和轮对加速度主频向低频移动,同时轮对及浮置板在63 Hz以上的振动减轻,但会加剧钢轨在250 Hz以上的振动;实际设计中对减振性能要求较高的地段可选用钢轨嵌入式钢弹簧浮置板轨道,并适当降低轨下连续支承刚度和阻尼来提升轨道结构的减振性能。研究成果可为160 km/h市域地铁快线中钢轨嵌入式钢弹簧浮置板轨道的选用和轨下连续支承参数的设计提供参考。  相似文献   

7.
弹性钢轨扣件轨道的轮轨作用力分析   总被引:1,自引:0,他引:1  
采用弹性钢轨扣件是城市轨道交通轨道减振的最基本措施.为分析弹性钢轨扣件轨道的轮轨作用力,通过建立地铁车辆一弹性扣件动力分析模型,分析了扣件刚度、列车运行速度等对轮轨作用力的影响.对于弹性钢轨扣件的轨道结构,合理降低扣件刚度,可减小轮轨动力冲击和扣件支点反力,提高减振效果.通过现场测试获得弹性扣件轨道的钢轨垂直力,验证了理论分析结果.  相似文献   

8.
通过对钢轨进行模态分析来研究钢轨的振动.对比分析了不同刚度扣件下钢轨的自振频率.通过研究钢轨自振情况下的应力分布来寻找更好的轨道减振措施.结果表明:扣件刚度越大钢轨的自振频率越大,但是变化不大;钢轨振动时其轨腰处应力较大,尤其是扣件位置.因此,研究通过在钢轨上采取措施来实现减少轨道振动这一方面的课题时,建议应将重点放在研究减少钢轨轨腰的振动上.  相似文献   

9.
为确定服役状态下的轨道扣件动刚度,将钢轨视为置于连续弹性基础上的简支梁,推导扣件动刚度计算式,提出基于连续弹性基础梁模型的扣件动刚度测试方法,对某服役状态下的高铁线路轨道扣件动刚度进行测试.结果 表明:扣件动刚度由钢轨1阶弯曲振动的频率和参振长度、钢轨的单位长度质量和抗弯刚度以及扣件的支承间距决定,当轨道结构确定时扣件...  相似文献   

10.
弹性支承块式无碴轨道振动分析新模型   总被引:2,自引:0,他引:2  
针对弹性支承块式无碴轨道结构特点,提出了一种新的用于竖向振动分析的有限元模型。在该模型中,钢轨模拟为弹性点支承Euler梁;钢轨下面的支承块视为刚体;轨道板视为弹性薄板,并且采用横向有限条与板段单元法对其进行位移插值;钢轨扣件模拟为线性弹簧和阻尼器;轨道板和混凝土底座下的路基模拟为连续分布面弹簧和阻尼器。在此基础上,基于弹性系统动力学总势能不变值原理和形成系统矩阵的"对号入座"法则,推导了弹性支承块式无碴轨道的竖向振动总势能,为建立弹性支承块式无碴轨道竖向振动方程,乃至进行弹性支承块式无碴轨道在高速列车作用下的动力响应分析奠定了良好基础。  相似文献   

11.
为了研究一种应用于浮置板轨道结构的新型橡胶减振垫的振动传递特性,对比某基于局域共振新型减振垫与普通橡胶减振垫的减振性能,研究预压质量与激振加速度对振动传递特性的影响,对新型橡胶减振垫进行刚度试验与振动传递特性试验,测试其在30~200 Hz频率下的传递特性,试验过程中采用不同的预压质量与激振加速度,振动传递特性测试采用加速度激振的方法,以加速度传递率作为减振垫振动传递特性的评价指标。结果表明:新型减振垫加速度传递率更小,减振效果更好,最大可以减小10 dB左右;减振垫上方预压质量对振动传递特性有较大影响,预压质量越大,加速度传递率越大,减振效果越差;减振垫的刚度对其振动传递特性有一定的影响,激振的加速度幅值对加速度传递率影响较小。  相似文献   

12.
水害条件下弹性道床垫减振轨道的性能研究   总被引:3,自引:3,他引:0  
为研究弹性道床垫减振轨道在隧道遇水不利情况下的耐久性及稳定性,通过设计室内原型试验,测试分析泡水疲劳前后轨道结构部件的性能变化,并基于试验结果和轮轨系统动力学理论,分析泡水疲劳前后弹性道床垫减振轨道的减振性能变化规律。研究结果表明:(1)疲劳后轨道结构各部件功能保持稳定,该减振轨道具有良好的耐久性;(2)泡水疲劳试验前后,扣件系统的刚度变化率为1.40%,道床垫刚度变化率为5.95%;(3)弹性道床垫减振轨道具有稳定良好的减振性能,相比普通整体道床轨道结构,能够有效降低车体、轮对及钢轨在中心频率为40~60 Hz区间内的振动加速度级。  相似文献   

13.
不同时速下地铁多种轨道结构现场测试与分析   总被引:2,自引:2,他引:0  
近年来地铁振动污染问题日益突出,地铁中亦采用多种减振轨道结构型式用于减振。为详细评价各种减振轨道结构的减振效果,以地铁动力测试为依托,在频域内分析4种轨道结构各测试断面在不同时速下的振动特征。结果表明:对于长枕埋入式整体道床轨道而言,行车速度的增加对钢轨、道床、隧道竖向加速度低频范围内的影响较大,而在中高频影响较小。对于GJ-Ⅲ型中等减振扣件轨道,随着行车速度的增加,GJ-Ⅲ型中等减振扣件轨道减振效果下降较明显。同时随着行车速度的提高,橡胶隔振垫浮置板轨道仅对浮置板和隧道减振效果较稳定,而钢弹簧浮置板轨道对钢轨、浮置板及隧道减振效果都很稳定。  相似文献   

14.
减振型轨道结构是控制文物振动的有效措施之一,然而,高速铁路中减振型轨道结构尚无成熟应用经验。结合兰新高铁穿越长城段项目建设功能需求,在明确长城体水平振动速度、钢轨垂向振动加速度及钢轨垂向位移等评价指标及限值基础上,采用仿真分析法开展了减振型无砟轨道减振垫刚度变化对各评价指标影响分析,分析表明:(1)长城体水平振动速度随着减振垫刚度增加而增大;(2)钢轨垂向加速度随着减振垫刚度增加而变化不大;(3)钢轨位移随着减振垫刚度增加而减小;(4)列车运营、轨道结构服役性能及长城体保护需求的减振垫刚度应介于40~166.7 MPa/m。兰新高铁工程实施采用46 MPa/m刚度减振垫,实车测试及工程应用表明:研究成果工程应用同时满足了高铁安全、平顺、舒适性和长城体高减振性能需求。  相似文献   

15.
基于车辆-轨道单元的无砟轨道动力特性有限元分析   总被引:6,自引:0,他引:6  
张斌  雷晓燕 《铁道学报》2011,33(7):78-85
根据CRTSⅡ型无砟轨道系统结构特点,建立列车-轨道-路基耦合系统动力分析模型,提出一种包含钢轨、扣件、轨下垫板、预制轨道板、CA砂浆层、混凝土支承层及路基的无砟轨道单元,并推导该单元刚度矩阵、质量矩阵和阻尼矩阵。运用Lagrange方程建立高速列车通过时无砟轨道动力特性分析的有限元数值方程。结合实例,研究无砟轨道轨下垫板、CA砂浆层、路基等结构参数对轨道振动的影响,并对有砟轨道与无砟轨道连接段动力特性进行分析,分析时考虑列车速度、轨道基础刚度等影响因素。计算结果表明:无砟轨道结构参数合理取值与刚度合理匹配可显著提高轨道整体工作性能;连接段轨道基础刚度变化对钢轨垂向加速度和轮轨作用力均有影响,其影响随列车速度提高而增大;连接段采取轨道刚度渐变过渡措施,可明显降低车辆-轨道结构冲击振动,有效改善行车品质。  相似文献   

16.
板式减振垫轨道能降低列车运营对周围环境的影响,确保城市轨道交通引起的振动满足环保要求,在高等减振设计中普遍采用。基于轮轨耦合作用,建立城轨列车-板式减振垫轨道-下部基础有限元模型,对不同减振垫刚度下板式轨道结构进行模态、谐振分析,并对其减振性能进行研究。研究表明:(1)减振垫轨道结构的固有频率随着减振垫刚度的增大而增大,振型包括轨道板的平动、转动、弯曲和钢轨的侧翻、扭转;(2)钢轨至轨道板的传递损失集中在15~30 d B,而轨道板至基底的传递损失峰值达51 d B;(3)车体加速度、轮轨垂向力、钢轨加速度、基底垂向加速度随着减振垫刚度的增大呈增大趋势,而钢轨位移、轨道板加速度和位移呈减小趋势;(4)板式减振垫轨道在25~100 Hz频段的减振效果较好,特别是1/3倍频程中心频率63 Hz处,插入损失达24 d B;在1~25 Hz频段的减振效果一般,而且局部频段出现振动放大的情况。  相似文献   

17.
针对橡胶隔振垫减振道床独特的结构,分析了圆形隧道内橡胶隔振垫减振道床的尺寸、橡胶减振垫刚度的不同对结构配筋及减振效果的影响,以确保减振型轨道结构的安全性、有效性和耐久性,可供类似工程的橡胶隔振垫减振轨道设计参数取值参考和借鉴.  相似文献   

18.
为了掌握钢轨扣件减振橡胶中阻尼的分布及其随振幅和频率的变化规律,对减振橡胶元件受压和受剪两种扣件进行了试验研究。建立钢轨扣件减振橡胶非线性弹性力和混合阻尼叠加的动力学模型,完成模型参数识别及结果检验。根据所建立的动力学模型计算各试验工况下的弹性变形能、阻尼耗能和结构损耗因子。分析发现:压缩和剪切两种扣件减振橡胶的阻尼参数随振幅和频率的变化规律相似,弹性变形能、阻尼耗能和结构损耗因子均随振幅的增大而显著增大,而受频率的影响较小。相同工况下,压缩型扣件减振橡胶的结构损耗因子远大于剪切型扣件,说明压缩型扣件在发挥减振功能时,其耗能特性优于剪切型扣件,而隔振特性劣于剪切型扣件。因此,在钢轨扣件创新设计时,可以通过控制减振橡胶压-剪组合变形,来实现扣件隔振和衰减振动能量两功能的均衡发挥,将结构损耗因子作为设计过程中的控制指标。  相似文献   

19.
为了研究垫板刚度对地铁中大量使用的双弹性垫板扣件减振性能的影响,通过对简化模型的理论推导,以及采用实验室测试和数值模拟相结合的方法,得出:板下垫板刚度越大,则轨道板位移频响越大,轨下垫板刚度大小对轨道板振动位移频响基本没有影响;轨下垫板刚度以及板下垫板刚度越大,则轨道板振动加速度频响越小。因此,设计开发双弹性垫板的扣件,应该根据轨道板位移控制和加速度控制综合考虑。  相似文献   

20.
无砟轨道的整体刚度比有砟轨道大,为降低列车通过时的轮轨振动以及环境振动,有关无砟轨道的减振措施应运而生,考虑3种减振垫组合:轨下减振垫、轨下减振垫+枕下减振垫和轨下减振垫+板下减振垫。为研究3种减振垫组合情况下的减振性能,基于FEM方法,建立3种组合情况下的振动力学模型,对其进行谐响应分析,结果表明:轨下减振垫+枕下减振垫组合和轨下减振垫+板下减振垫组合不利于减少轮轨(钢轨)振动;轨下减振垫+板下减振垫组合有助于降低200 Hz频率以下环境(底座板)振动,最多能降低底座板振动加速度级为11.98 d B,频率越低减振能力越强;轨下减振垫+枕下减振垫组合仅能略微降低20 Hz频率以下环境(底座板)振动,最多能降低底座板振动加速度级为5.46 d B;相关计算和分析可为合理设计减振垫位置提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号