首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 126 毫秒
1.
为研究有轨电车6号道岔尖轨转换规律,应用有限元软件建立了有轨电车槽型轨尖轨转换模型,分析滑床板摩擦系数、钢轨密贴段刚度、扣板横向刚度和抗扭刚度、扣板位置对尖轨转换过程中尖轨牵引点转换力和最大不足位移的影响。结果表明:随着滑床板摩擦系数的增加尖轨牵引点转换力和最大不足位移均增加,大致呈线性增长趋势;尖轨从反位扳到定位时牵引点转换力与密贴段刚度取值无关,尖轨从定位扳到反位时密贴段刚度较小的情况下尖轨牵引点转换力不发生改变,密贴段刚度达到1 000 k N/m并继续增加时尖轨牵引点转换力急剧增加;随扣板横向刚度和抗扭刚度的增大尖轨牵引点转换力增加,不足位移变化较小;扣板距尖轨跟端越远尖轨牵引点所需转换力越大,尖轨最大不足位移越小。  相似文献   

2.
为解决小号码道岔转换设计中转换力和不足位移的问题,基于有限元的方法,以10号道岔为例,分别建立尖轨和心轨的有限元模型,着重分析了滑床板摩擦系数、扣件横向刚度以及夹异物对道岔转换的影响。结果表明:转换力和不足位移随滑床板摩擦系数的减小而减小,随扣件横向刚度的增大而减小,当牵引点附近存在夹异物时会导致道岔转换不到位的现象。  相似文献   

3.
为了控制高速道岔心轨扳动力和不足位移,根据双肢弹性可弯心轨的特殊结构外形、受力特性和扳动机理,建立心轨转换仿真模型,以42号道岔为例分析不同牵引点布置方式下心轨扳动力和不足位移的变化规律.计算结果表明:牵引点扳动力随摩擦系数的增大基本成递增关系,扳动力的很大一部分用于克服滑床板的摩擦力;采用减摩措施、增设牵引点可以减小扳动力和不足位移;在最后一牵引点至跟端间设置反变形,可使不足位移控制在客运专线要求之内.  相似文献   

4.
研究目的:针对提速道岔用滑床板存在扣压力失效、弹片与销钉出现裂纹、滑床台板表面阻力大、轨距调整困难等问题,改进和优化了提速道岔用滑床板的结构.研究结论:研制的改进型滑床板一方面能持久、可靠地扣压基本轨内侧,保持扣压力的恒定,另一方面能够方便、灵活地配合基本轨进行轨距调整;另外,滚轮滑床板减小了道岔转换阻力,降低了尖轨的不足位移,能确保道岔的转换可靠,满足了铁路快速发展对道岔滑床板的使用要求.  相似文献   

5.
采用有限元方法,建立新型相离型曲线尖轨9号道岔的扳动力计算模型,分析摩擦系数、尖轨动程、尖轨与滑床板密贴、道岔轨底坡等取决于安装及维修状态的因素,以及对尖轨扳动力和不足位移的影响.提出在铺设及养护维修过程中应注意的事项.探讨9号道岔取消第2牵引点的可行性,认为在目前的尖轨结构下保持2点牵引较为可靠.  相似文献   

6.
为保证9号道岔牵引点位置、牵引点动程、转辙机选取等的合理性,建立了尖轨扳动力的计算模型,对尖轨扳动力及不足位移进行计算分析。结构表明:9号道岔尖轨不足位移较小,为非控制因素;尖轨扳动力较大,为控制因素,主要受尖轨跟端扣件刚度、尖轨跟端扣件组数、滑床台摩擦系数和牵引点动程的影响;当将尖轨跟端设置3组扣件,第一、二牵引点的动程分别设置为160 mm和70 mm时,尖轨扳动力、不足位移和最小轮缘槽宽都符合要求。  相似文献   

7.
根据客专线18号道岔尖轨的结构特征、受力特点及转换机理,采用MIDAS/Civil和ANSYS软件建立尖轨有限元仿真模型,然后根据尖轨转换实际情况对模型进行优化,利用优化后的模型分析在转换过程中尖轨所需克服的主要阻力,并分析尖轨跟端轨底刨切宽度和刨切长度的变化对尖轨转换的影响。结果表明:尖轨第1牵引点最大扳动力主要用于克服摩擦力与密贴反力;第2、第3牵引点最大扳动力主要用于克服摩擦力与抗弯反力;增加尖轨跟端工作边轨底刨切宽度可降低尖轨转换时的扳动力,但不足位移会增大;改变刨切长度对尖轨扳动力与不足位移的影响较小。  相似文献   

8.
多点牵引时道岔扳动力计算与分析   总被引:8,自引:0,他引:8  
考虑扳动力、摩擦力、密贴力、反弹力及锁闭力等 ,建立多点牵引时弹性可弯尖轨、单肢及双肢弹性可弯心轨扳动力计算理论 ,分析滑床台摩擦因数、牵引点的布置、转换方式等因素对扳动力及不足位移的影响。  相似文献   

9.
滑床板位于道岔区尖轨和基本轨组件下,在整个尖轨长度范围内承托尖轨并扣压基本轨,其状态直接影响到列车过岔的安全性.滑床台与底板脱焊、底板及压舌断裂等问题作为道岔区的常见病害,长期以来一直是运营单位道岔区养护维修工作的重点和难点.为彻底解决滑床板的病害问题,研发了一种新型的整铸滑床板结构.从制造工艺、材质、增加滑床台宽度和压舌根部倒圆半径值等角度进行了优化改进,并通过理论分析及室内极限破坏对比试验,验证了新型整铸滑床板优异的力学性能,成功进行了在线试验段铺设.整铸滑床板的成功研发及应用对于道岔区滑床板病害的彻底根治具有重要意义.  相似文献   

10.
针对跟端由弹性可弯结构代替既有活接头结构的新型50 kg·m~(-1)钢轨9号道岔尖轨,采用ANSYS软件中具有变截面特性的BEAM188三维单元建立有限元模型,通过分析4种尖轨牵引点动程对密贴尖轨不足位移、斥离尖轨扳动力和斥离尖轨弯曲应力的影响,以及在8个不同位置分别设置连杆时密贴尖轨不足位移的分布规律、斥离尖轨扳动力幅值和斥离尖轨轮缘槽宽度,研究新型尖轨的转换特性。结果表明:随着牵引点动程增加,新型尖轨斥离时轮缘槽宽度、扳动力和弯曲应力近似呈线性趋势增加;为使轮缘槽宽度满足限值要求,新型尖轨牵引点动程取160 mm时,扳动力峰值小于3.5 kN,与既有转辙机性能匹配良好;在距尖轨尖端2.25~2.85 m位置处设置连杆,能够有效控制新型尖轨密贴时的不足位移,并保证轮缘槽宽度满足要求。新型尖轨参数设计合理,转换特性良好,具备取代既有尖轨的可行性。  相似文献   

11.
不足位移对高速道岔动力特性的影响   总被引:1,自引:0,他引:1  
为揭示道岔不足位移对高速行车的影响,根据高速道岔、列车的结构特点、力学特性和相互作用关系,建立车辆-道岔耦合动力学模型,并以高速列车直向350km/h、侧向80km/h通过350km/h客运专线18号无砟道岔为例,分析不同不足位移情形下车辆和道岔的动力学特性。结果表明:尖轨、心轨不足位移对列车动轮载、钢轨动应力影响较小,对轮缘力、车体横向加速度、轮重减载率、脱轨系数影响较大;不足位移会严重影响高速列车直、侧向过岔的舒适性及安全性,影响高速道岔正常工作状态;牵引转换设计时,应严格控制道岔尖轨、心轨不足位移。  相似文献   

12.
基于ALE (Arbitrary Lagrangian Eulerian)有限元建立稳态轮轨滚动接触的三维有限元模型.利用该模型计算和分析重载轮轨滚动接触的黏着特性,并研究不同速度等级对重载轮轨黏着蠕滑特性的影响.用该模型对重载大功率机车车轮在轨道上从制动、惰行到牵引过程进行计算,得到了这一过程中轮轨接触状态的变化规律和黏着特性曲线.在重载大功率机车从制动、惰行到牵引的过程中,轮轨纵向摩擦力由反方向饱和状态逐渐转变成牵引方向饱和状态,而轮轨横向摩擦力始终呈反对称性分布,其最大值位置先是逐渐靠近接触斑中心,然后又逐渐远离之;摩擦力矢量呈旋转分布,其方向从与运动方向相反逐渐变为与运动方向相同,其旋转中心从轮缘附近逐渐进入接触斑,随后又逐渐向轮缘一侧移动;当轮轨纵向蠕滑率较小(≤0.003)时,黏着力随纵向蠕滑率的增加而近似线性增加,但运行速度对此影响不大;进入大蠕滑率(>0.003)区域后,黏着力随蠕滑率的增加而减小,并且速度越高,黏着力降低得越快.  相似文献   

13.
为了进一步考虑粗糙表面对轮轨蠕滑的影响,从微凸体的微米尺度跨越到米的尺度,着力于摩擦的物理学本质,建立干摩擦工况下的轮轨蠕滑力的二维动态计算模型。通过微凸体接触与断开来模拟轮轨接触的滚滑运动,讨论不同速度、蠕滑率、轮轨表面粗糙度参数等因素对轮轨黏着系数的影响,对每个因素造成的轮轨牵引系数的变化进行数值分析。在中低速情况下,通过对线路测量数据和实验室JD对滚机数据与模型计算结果的对比,验证了模型的有效性。结果表明随着速度的增大,黏着系数随之下降;适当增加轮轨表面粗糙度能提高轮轨间的黏着系数;同时以非人为划分的方式重现接触斑内牵引系数变化的过程,从黏着区到滑动区的过渡过程。  相似文献   

14.
文章针对轨道交通车辆轮轨磨耗及噪声的问题,提出控制轮轨摩擦因数的方法 ,通过轮轨润滑对轮轨磨擦和噪声的影响分析,得出使用轮缘润滑设备可有效降低轮轨磨耗并消除轮轨滑动摩擦产生的尖锐噪声。实际测试结果也证明了这一方法确实可行。  相似文献   

15.
尖轨的轨高是影响轨道结构振动与变形、列车运行安全性、平稳性及轨道养护维修工作量的重要参数,而尖轨轨高的测量基准则是检测尖轨轨高正确与否的重要基础;针对目前尖轨轨高测量的第一测量基准与第二测量基准,假定车轮与钢轨均为刚体,以尖轨轨高之间的高差和以轨轮接触关系为依据计算得出机车车辆在垂直方向的位移作为2种评价指标,对尖轨轨高的测量基准进行了讨论。结果表明,在测量尖轨轨高时,采用第一测量准则更为合理。  相似文献   

16.
城市轨道交通具有安全、舒适、速度快、运量大的特点,但由于工程造价昂贵、工程量大、施工周期长、环境控制困难,在一定程度上限制了它的应用。采用线性电机驱动的轮轨车辆可有效降低车体高度,减小隧道断面面积,从而达到降低工程造价的目的。另外,线性电机的电磁力可直接作用于线路产生牵引力,牵引力不再受粘着系数限制,车辆爬坡能力强,选线自由度大,轮轨磨耗和噪声小,有利于采用高架线路结构。因此,采用线性电机驱动的轨道交通成为城市轨道交通的发展趋势之一。  相似文献   

17.
机车牵引状态下曲线通过导向特性研究   总被引:1,自引:0,他引:1  
考虑车轮与钢轨的运动特性及轮周牵引力,推导出机车在牵引状态下通过曲线时的轮轨蠕滑率计算公式,并对曲线通过时的轮轨横向动态相互作用特性进行仿真计算与分析;同时研究牵引力大小对转向架导向性能的影响,对比分析了机车牵引与惰行状态下的导向性能。理论仿真分析结果表明:牵引力可以改变轮轨纵向蠕滑力的大小和方向,与惰行工况相比,牵引状态下的轮对导向力矩有所减小,轮对的自导向能力减弱,不利于曲线通过;提高牵引力,总轮轨蠕滑率将很快达到饱和状态,牵引力越大,轮轨纵向蠕滑力越大,两侧纵向蠕滑力差值越小,机车轮对自导向能力越差,轮对冲角增大,而轮轨横向蠕滑力越小;当牵引力增加到一定程度时,总轮轨蠕滑率超过极限状态,曲线通过时两侧轮径差太小而出现打滑和空转的现象。  相似文献   

18.
为提高列车高速直向过岔平稳性,将60N钢轨廓形及新设计的尖轨廓形应用于18号高速道岔转辙器部分,应用车辆-道岔耦合动力学理论,建立模型进行动力学仿真计算,与CHN60高速道岔转辙器动力特性进行对比。仿真计算结果表明:60N高速道岔转辙器部分轮载过渡段起点前移,轮载过渡时间增长;车辆直向经过道岔转辙器时的滚动圆半径差、轮对横移量和钢轨横向接触点外移幅值均减小,轮对蛇形运动幅度减小,行车平稳性得到提高;轮轨最大横向力由6.12 kN降低至4.75 kN,轮轨横向相互作用力减弱;车轮脱轨系数、车体横向加速度略有减小,轮轨垂向力、车轮减载率和车体垂向加速度变化不大,均在安全范围内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号