首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
在根据应力等效假设提出沥青混合料疲劳损伤参量的基础上,通过对常应力小梁弯曲疲劳试验数据的分析得出:不同试验条件下的沥青混合料弯曲疲劳试件的损伤累积过程都具有相同的变化规律,即随着加载次数的增加,沥青混合料的累积损伤量不断增大.累积损伤曲线的突变点就是沥青混合料达到疲劳破坏的标志。  相似文献   

2.
在根据应力等效假设提出沥青混合料疲劳损伤参量的基础上,通过对常应力小梁弯曲疲劳试验数据的分析得出:不同试验条件下的沥青混合料弯曲疲劳试件的损伤累积过程都具有相同的变化规律,即随着加载次数的增加,沥青混合料的累积损伤量不断增大,累积损伤曲线的突变点就是沥青混合料达到疲劳破坏的标志.  相似文献   

3.
通过劈裂疲劳试验原理,研究经过疲劳损伤后沥青混合料劈裂抗拉剩余强度。依据劈裂疲劳试验方法,设定4个应力比2个加载频率试验条件得出沥青混合料S—N疲劳方程。根据疲劳方程结果与线性损伤理论,规定疲劳损伤程度分别为20%、40%、50%、60%、80%,确定各试验条件下不同损伤程度的疲劳作用次数。经过不同损伤程度疲劳试验后,对各沥青混合料试件进行劈裂剩余强度试验,并建立各试验条件劈裂剩余强度—损伤程度变化规律。为量化计算AC—13型沥青混合料剩余强度随损伤的变化规律,引入指数函数y=keax关系式拟合各试验条件坐标,得出劈裂剩余强度—损伤程度的指数表达式。  相似文献   

4.
基于数字图像处理技术来研究沥青混合料的细观结构,回顾沥青混合料细观结构静态及动态识别的研究进展,其后列出一幅数字图像处理技术流程图并对获取沥青混合料内部结构图像方法(X-ray CT技术)进行了详细介绍;对通过图像处理技术来描述混合料内部结构特征,即集料形状及分布、接触特性和空隙分布规律等方面的研究进展情况进行论述,介绍了运用有限元、离散元和边界元这3种数值模拟方法及有关沥青混合料细观力学特征的虚拟试验.研究表明:X-ray CT无损伤扫描技术能较好识别沥青混合料内部细观结构特征;数值模拟结合有限元、离散元或边界元法能将沥青混合料内部细观结构与其宏观性能之间建立有机联系;虚拟试验应用能很好帮助理解宏观试验结果.在集料形状与分布研究中,尚未形成统一的评价指标,且不同研究人员采用不同的评价指标;X-ray CT技术精度问题和适用范围还需进一步改善;集料、沥青胶浆和空隙这3者之间还未建立有效的区分方法.通过总结数字图像处理技术对沥青混合料细观结构的应用,以期为后续关于沥青混合料宏观-细观-微观研究提供参考.  相似文献   

5.
基于数字图像处理技术来研究沥青混合料的细观结构,回顾沥青混合料细观结构静态及动态识别的研究进展,其后列出一幅数字图像处理技术流程图并对获取沥青混合料内部结构图像方法(X-ray CT技术)进行了详细介绍;对通过图像处理技术来描述混合料内部结构特征,即集料形状及分布、接触特性和空隙分布规律等方面的研究进展情况进行论述,介绍了运用有限元、离散元和边界元这3种数值模拟方法及有关沥青混合料细观力学特征的虚拟试验.研究表明:X-ray CT无损伤扫描技术能较好识别沥青混合料内部细观结构特征;数值模拟结合有限元、离散元或边界元法能将沥青混合料内部细观结构与其宏观性能之间建立有机联系;虚拟试验应用能很好帮助理解宏观试验结果.在集料形状与分布研究中,尚未形成统一的评价指标,且不同研究人员采用不同的评价指标;X-ray CT技术精度问题和适用范围还需进一步改善;集料、沥青胶浆和空隙这3者之间还未建立有效的区分方法.通过总结数字图像处理技术对沥青混合料细观结构的应用,以期为后续关于沥青混合料宏观-细观-微观研究提供参考.  相似文献   

6.
沥青混合料细观力学数值分析   总被引:1,自引:0,他引:1  
为了分析细观状态下沥青混合料的力学性能,从沥青混合料的细观尺度出发,利用质量比与比表面积不变的原则配置试件,将粒径小于4.75mm的骨料视为基体材料,利用CT扫描及图像处理技术得到混合料试件的骨料分布,对预先设定配合比的沥青混合料试件进行强度试验,得到沥青混合料强度及数值模型的参数;在ABAQUS软件中用弹性模型模拟沥青混合料二维数值路面结构在荷载作用下的变形,并对弹性状态下路面细观二维数值模型与均质模型进行对比。结果表明:路面细观二维数值模型与均质模型数值分析结果接近,同时实验结果与数值模拟的相对误差在10%以内,说明数值模型能够对路面结构受力情况进行比较准确的模拟,验证了细观状态下分析路面受力情况的有效性。  相似文献   

7.
针对两种老化程度不同的废旧沥青混合料,分别进行不同RAP质量分数的再生沥青混合料配合比设计.并进行再生沥青混合料劈裂强度和间接拉伸疲劳试验,并通过加速老化前后疲劳特性的变化,对比分析不同RAP材料对再生沥青混合料疲劳特性的影响.试验结果表明,RAP老化程度严重的再生沥青混合料的劈裂强度大于RAP老化程度较轻的再生沥青混合料劈裂强度.RAP材料老化越严重,其再生沥青混合料的疲劳寿命越短,对应力的敏感性也就越低.  相似文献   

8.
沥青混凝土路面水破坏的疲劳损伤模型研究   总被引:2,自引:1,他引:1  
结合路面取心实验,利用CT技术对沥青混凝土水破坏机理进行研究.实验表明:在无水状态的疲劳实验中沥青基质面积率略有增大,而在饱水状态沥青基质面积率减少;定义沥青混凝土中空隙增长为损伤变量,结合疲劳实验,得到不同应力水平下沥青混凝土的损伤演化方程和疲劳寿命方程,依此对某高速公路沥青混凝土路面进行水破坏分析,结果表明:该路面在无水状态下满足设计要求,但在饱水状态下,其疲劳寿命和强度将达不到设计要求.  相似文献   

9.
为研究AC-13沥青混合料在重复荷载下各挡粗集料的抗疲劳性能,提出反映各挡粗集料特性的沥青混合料等效基体(AC-9.5、AC-4.75、AC-2.36、AC-1.18)概念;通过疲劳过程等效基体的开裂特性,分析各挡集料的抗疲劳能力。建立疲劳过程Miner线性损伤模型,设计不同应力水平的劈裂强度试验和疲劳试验,得出各等效基体劈裂抗拉强度和疲劳寿命。依据损伤模型与疲劳寿命结果,划分沥青混合料及其等效基体不同损伤程度(20%~80%)的疲劳作用次数;定义裂纹贯穿比例,分析不同应力水平等效基体随损伤程度的裂纹贯穿变化规律。结果表明:9.5~13.2 mm集料和4.75~9.5 mm集料对提高AC-13沥青混合料抗疲劳性能的作用大于2.36~4.75 mm和13.2~16 mm集料;通过提高4.75~13.2 mm集料的质量分数可以提高沥青混合料的抗疲劳性能,但提高13.2~16 mm和2.36~4.75 mm集料的质量分数对提高抗疲劳性能作用不明显。  相似文献   

10.
为明确大空隙沥青混合料在寒区服役环境下的损伤规律,研究采用宏观损伤试验和细观定量分析技术[无损CT扫描和Image-Pro Plus(IPP)图像处理技术]相结合的方法,对寒区冲刷、堵塞和冻融作用下OGFC-13和OGFC-16的性能和细观空隙结构特性进行了分析。结果表明:在动态水压冲刷作用下,空隙率为25%的试件强度降幅明显,最大降幅达到30%以上;在极端堵塞试验中,堵塞物最大堵塞深度达到20 mm左右,堵塞后的渗透系数均小于0.06 cm/s;冻融作用下,混合料的损伤度随循环次数而升高,而OGFC-13损伤度低于OGFC-16,且在23%的孔隙率下损伤度最低;细观空隙结构定量分析显示,混合料空隙率在冻融和冲刷作用下会略微升高,在堵塞状态下会大幅降低;孔隙数量变化趋势与孔隙率相反,孔隙特征表现为其等效直径均以1.18~4.75 mm为主,约占空隙数量的50%。本项研究得出了寒区大空隙沥青混合料宏观性能和细观空隙结构衍化规律,可为寒冷地区大空隙混合料设计提供技术支撑。  相似文献   

11.
沥青混合料疲劳性能影响因素的灰关联分析   总被引:13,自引:0,他引:13  
荷载条件,环境条件以及沥青混合料本身性质都会影响沥青混合料的疲劳性能,研究了荷载间歇时间、加载频率,试验温度,空隙率,沥青针入度,沥青用量六因素对沥青混合料疲劳性能的影响程度。首先将影响因素适当组合,在MTS材料试验系统上进行了不同条件下的应力控制的疲劳试验;然后灰关联的分析方法,分析了各影响因素与沥青混合料疲劳寿命的关联程度;最后,讨论了各因素是如何影响沥青混合料的疲劳性能的,研究表明,各因素对沥青混料疲劳性能影响程度大小顺序为:荷载间歇时间→试验温度→沥青针入度→加载频率→混合料空隙率→沥青用量。  相似文献   

12.
浇注式沥青混合料作为钢桥面典型铺装材料之一,与正交异性钢桥面板构成的组合结构,共同承载车辆荷载.为了探讨钢桥服役期间浇注式沥青混合料材料参数对其复合结构疲劳损伤规律的影响,采用三点加载的复合梁疲劳试验,采集试验过程中荷载、变形参数,计算复合梁损伤变量,分析材料模量、铺装厚度、荷载水平对复合梁疲劳损伤的影响程度.结果表明:相同变形条件下,较高模量的材料提高了铺装层刚度,但自身衰变速度相反更快;厚度变化与复合梁疲劳损伤速率基本呈线性关系;荷载变化对其影响非常大,特别是当施加的荷载初始挠度由0.6 mm增加到0.8 mm时,复合梁疲劳损伤速率加快了180%.  相似文献   

13.
用冻融循环模拟沥青混合料的水损坏状态,采用劈裂疲劳试验分析对比了水对AC-25沥青混合料疲劳特性的影响。研究指标包括:破坏形式差异、疲劳寿命差异、疲劳参数差异以及级配。分析表明:经过1次冻融循环后的破坏劲度模量比未冻融时低约27%;在水损害状态下,沥青混合料的疲劳寿命较普通状态下大为缩短;且沥青混合料试样的疲劳寿命对应力水平更为敏感;沥青混凝土的抗疲劳性能从优到劣的集料级配排序为粗级配、细级配、级配中间值。  相似文献   

14.
为了确定影响沥青稳定碎石基层疲劳性能的关键因素,基于ATB25与ATB30两种密集配沥青稳定碎石混合料,选择9种集料级配、3种沥青,以13种混合料试件的10项材料试验数据为参考列,以沥青稳定碎石疲劳方程中的k值与n值为比较列,进行影响沥青稳定碎石疲劳性能的灰熵分析,得到不同参数对沥青稳定碎石疲劳性能影响的显著程度,并在此基础上运用对应分析的统计学研究方法对相关结论进行统一.研究结果表明:沥青混合料的沥青饱和度、油石比这两项因素是影响沥青碎石稳定基层疲劳性能的最关键因素;沥青饱和度影响着沥青体积百分率和矿料间隙率,而油石比的变化会导致沥青饱和度和沥青膜厚度随之变化,从而显著影响沥青混合料的疲劳寿命.  相似文献   

15.
为了分析非均质性对沥青混合料劈裂试验的影响,文章基于沥青混合料CT扫描图像,利用数字图像处理技术获取细观几何结构信息,结合推进波前法(Advancing Front Technique,AFT)网格剖分技术生成沥青混合料细观网格模型,进一步进行材料属性定义、边界条件约束和加载来模拟劈裂试验过程。从时间和空间角度剖析了沥青混合料细观结构的应力应变分布规律,研究结果表明:随着加载时间的增加,水平应力应变、竖向应力应变和剪切应力应变均以不同的速率逐渐增加,竖向应力应变大于水平应力应变,剪切应力应变最小;整体上,应力应变在竖向两端处最大,中心位置处次之,水平两端处最小;竖向两端处和中心位置最容易出现裂缝。  相似文献   

16.
根据应变控制模式下的四点小梁弯曲疲劳试验方法,研究了3种不同改性沥青对浇筑式沥青混合料疲劳的影响。结果显示:不同的改性沥青对浇筑式沥青混合料的疲劳性能影响非常显著,SK70基质沥青与湖沥青复合改性的沥青和ZX-30改性沥青成型的浇筑式沥青混凝土具有优异的抗疲劳性能,不同改性沥青对浇筑式沥青混合料的粘弹性能影响较大,浇筑式沥青混合料的滞后角愈大则疲劳寿命愈好。  相似文献   

17.
从混合料性质、载重、间歇时间和温度四个方面,对影响沥青混凝土疲劳行为的因素进行了分析,研究结果显示:增加沥青含量、降低空隙率可以提高沥青混凝土的疲劳寿命;疲劳破坏随车辆载重的增加而增大,且不同轴配、不同速度车辆所产生的影响存在差异;间歇时间可以减缓路面的疲劳破坏速度;环境温度及其变化对疲劳寿命的影响不容忽视。  相似文献   

18.
为了揭示岩沥青改性沥青混合料的疲劳耐久性,利用MTS-810材料试验系统,分别对普通重交沥青混合料、SBS改性沥青混合料和岩沥青改性沥青混合料等3种混合料进行了不同应力比下的疲劳试验,建立了3种沥青混合料的S-N疲劳方程,并对3种沥青混合料的疲劳试验结果进行了比较.在相同的应力比试验条件下,岩沥青改性沥青混合料的疲劳寿命最大,普通重交沥青混合料的疲劳寿命最小.岩沥青改性沥青混合料S-N疲劳方程参数k最大,n最小.研究结果表明:两个疲劳方程参数k和n均证实了岩沥青改性沥青混合料具有较好的抵抗疲劳荷载的能力.在荷载水平增加相同幅度的情况下,岩沥青改性沥青混合料的疲劳寿命衰减量最小.在相同的级配、油石比和荷载条件下,其疲劳耐久性最好.  相似文献   

19.
沥青含量对混合料疲劳极限特性的影响   总被引:2,自引:0,他引:2  
利用马歇尔试验确定了沥青混合料的最佳沥青含量,采用控制应变的小梁疲劳试验,研究了最佳沥青含量和富沥青含量混合料弯拉劲度模量随应变水平的变化规律,得到了应变水平与荷载作用次数模型,并分析了2种混合料在不同应变水平和轴次下的疲劳特性。分析结果表明:不同应变水平下,2种混合料弯拉劲度模量随荷载作用次数变化规律基本一致,高应变水平下弯拉劲度模量迅速衰减,低应变水平下初始阶段模量明显降低,随后趋于平缓;以弯拉劲度模量降为初始值的一半作为破坏标准,2种混合料疲劳寿命和应变的关系都呈非线性特征,且低应变水平下曲线呈现典型的渐近线趋势,表明2种沥青混合料具有类似的疲劳极限特性;富沥青含量混合料在高应变水平下对疲劳极限特性影响有限,只有当应变水平小于100με时才对疲劳寿命有明显改善;在进行永久性沥青路面沥青层设计时,不能简单通过增加沥青含量减薄沥青层厚度。  相似文献   

20.
制备了连续级配和间断级配条件下的纳米膨润土改性沥青混合料,利用大型UTM-30多功能沥青混合料试验机对不同类型的纳米膨润土改性沥青混合料展开间接拉伸疲劳试验,根据所得数据建立疲劳方程并进行系统的分析。结果表明:温度、纳米膨润土及添加剂均对沥青混合料的疲劳寿命有影响。10℃条件下的疲劳寿命高于30℃的疲劳寿命。纳米膨润土和添加剂使疲劳寿命有所提高,表现为疲劳方程的K值增大,n减小,且纳米膨润土对疲劳方程系数的影响程度大于添加剂,即沥青混合料的疲劳寿命的提高主要取决于纳米膨润土。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号