首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 235 毫秒
1.
桥面输送机改变了边主梁的气动外形,为研究其涡振性能及抑振措施,开展了1.00∶20.00刚性节段模型自由悬挂风洞试验. 首先,研究了带输送机边主梁断面涡振性能,并测试了结构阻尼比对其的影响;其次,对比了有、无输送带边主梁的涡振性能;最后,采用风嘴、梁底稳定板、水平隔流板等气动措施对主梁断面涡振性能进行了优化研究. 结果表明:带输送机边主梁在规范要求的0°、±3° 风攻角下的涡振性能均较差,最大超出规范限值286%;桥面输送机降低了主梁的涡振稳定性,涡振响应峰值提高了44%;梁底安装稳定板有利于改善主梁的涡振性能,并且与梁底同高的稳定板制振效果随其数量的增加而更优,安装3道1.5 m下稳定板对主梁涡振抑制效果达93%;伸出梁底0.5 m的2.0 m高中央稳定板能完全抑制主梁涡振;风嘴对主梁的涡振性能影响较弱,但在一定范围内具有最优角度取值;梁底单独布置水平隔流板,涡振响应峰值降低17%;优化主梁截面采用风嘴 + 风嘴水平分流板 + 1 m宽水平隔流板,主梁涡振响应峰值降低92%,且远低于规范限值.   相似文献   

2.
桥梁结构气动外形是影响桥梁结构涡激振动的重要因素。以某大桥流线型箱型断面为研究对象,通过数值模拟计算,研究了斜腹板倾角对流线型箱型断面涡激振动性能的影响,得出结论:流线型箱型结构发生涡振的风攻角以及风速锁定区间不受斜腹板倾角变化影响;最大竖向涡振振幅随斜腹板倾角的增大呈指数型增大。  相似文献   

3.
为研究宽幅分体箱梁桥梁涡激振动特性及其相应振动抑制方法,以某主梁总宽度为64.1 m的分体箱梁大跨悬索桥为工程背景,在均匀流场下对1∶70缩尺比节段模型进行了风洞试验. 首先研究了主梁成桥态在0°、± 3°和± 5°五种不同来流攻角下的涡激振动特性;其次,考察了单一气动措施(包括设置水平气动翼板、封闭中央开槽、隔涡网以及检修车轨道导流板),以及各种组合措施对主梁涡激振动的影响,检验了这些措施对主梁颤振性能的影响. 研究结果表明:宽幅分体式双箱梁在5个风攻角下均发生了竖向自由度涡激共振,其中最不利攻角为–3°,竖向振幅最大值为0.69 m,超过《公路桥梁抗风设计规范》限值的70%;设置隔涡网和采用组合气动措施后,较原始主梁,涡振振幅下降50.7%~98.6%;尽管抑振措施使主梁颤振临界风速降低6%~15%,但仍满足抗风设计要求.   相似文献   

4.
设置中央开槽的箱梁通常具有良好的颤振稳定性,但该类箱梁在大攻角来流作用下的涡振性能尚不明确. 采用数值模拟方法,针对某大跨度桥梁的流线型箱梁断面,分析了5种不同中央开槽宽度箱梁的流场特性和涡振稳定性能,探究了大攻角下中央开槽宽度变化对箱梁涡振性能的影响规律,并根据静态和动态流场的变化,系统讨论了相应的气动机理. 研究结果表明:在?10°~10° 风攻角范围内,封闭箱梁的阻力系数始终最小,而其升力系数绝对值则普遍大于开槽箱梁;中央开槽宽度(L)对箱梁涡振性能影响显著,箱梁涡振振幅随着开槽宽度的增大而减小,L/B(B为箱梁宽度)由0变化至0.20,涡振振幅变化幅度达到40.9%;开槽宽度的变化会影响箱梁上表面大旋涡的运动以及箱梁中央区域来流分离程度,进而改变箱梁的涡振振幅.   相似文献   

5.
为研究检修车轨道位置与导流板对宽体扁平箱梁断面涡振性能的影响,以深中通道伶仃洋大桥(大跨度宽体扁平钢箱梁悬索桥)为背景,通过1∶25节段模型风洞试验测试了主梁的涡振响应,并采用计算流体动力学方法(CFD)对断面的二维流场进行了模拟.结果表明:增大检修车轨道与主梁底板边缘之间距离l能够显著提高宽体扁平钢箱梁的涡振性能,当l≥Wb/6(Wb为主梁底部宽度)时,可完全消除宽体扁平箱梁在各风攻角下的涡激振动;在检修车轨道处设置17°倾角的内侧或双侧导流板均能够显著抑制梁体的涡激振动,且抑制效果相同,当l≥Wb/10时,布置导流板可完全消除梁体的涡激振动;增大检修车轨道与主梁底板边缘之间距离以及设置导流板均是通过消除断面下游斜腹板处的尾流漩涡,从而降低梁体受到的周期性涡激力,达到抑制主梁涡振的效果.  相似文献   

6.
悬索桥跨径越大,结构越轻柔,对风致振动越敏感,因此,研究悬索桥主梁抗风性能尤为重要。对某主跨1196m大跨度悬索桥,采用有限元建模计算分析了成桥状态的结构动力特性;通过静力节段模型试验,测试了成桥状态主梁的三分力系数,结果表明:该扁平加劲梁整体上具有较好的静风稳定性能;通过动力节段模型试验考察了成桥状态桥梁在风攻角为0°、±3°、±5°下的颤振稳定性能,风攻角为+3°和+5°时,颤振临界风速接近或低于颤振检验风速,其余风攻角下颤振稳定性能良好;通过优化人行栏杆构造、增大透风率对主梁断面进行优化,有效改善了主梁断面的气动性能。  相似文献   

7.
为研究基于主动吹气的流动抑振措施对流线型箱梁涡振性能的影响,进行了1∶50刚性节段模型自由悬挂风洞试验,节段模型与吹气装置连接以达到流动控制效果,分析了主梁处于最不利5°攻角时不同气孔参数下的涡振响应,并通过数值模拟重现了主梁竖弯涡振,分析了主动吹气对抑制主梁涡振的作用机理。研究结果表明:5°攻角原设计断面出现明显竖弯及扭转涡振现象,其中竖弯及扭转涡振分别有2个锁定区间,在竖弯第2锁定区间及扭转第1锁定区间出现涡振响应峰值;主动吹气的流动控制对主梁涡振响应幅值及涡振区间均有较大影响;主梁竖弯涡振在下腹板上下游或者下游吹气速率10 m·s-1时消失,最佳抑制效果达91.9%;吹气速率5 m·s-1对于扭转涡振有明显抑制作用,扭转涡振最佳抑制效果达65.4%;吹气速率对于涡振性能影响明显,吹气速率10 m·s-1的竖弯抑制效果优于吹气速率5 m·s-1,而吹气速率5 m·s-1的扭转抑制效果优于吹气速率10 m·s-1;气孔间距2.5 m工况总体涡振控制效果优于气孔间距5.0 m工况;气孔布置在下腹板的工况抑制效果优于气孔布置在上腹板的工况;当气孔布置于下游下腹板处,吹气速率达10 m·s-1,气孔间距为2.5 m时,主动吹气降低了主梁下游上下表面周期性脉动压差,破坏了下游下腹板处的负压中心,故其能有效抑制主梁竖弯涡振。   相似文献   

8.
静风效应产生的附加风攻角对大跨度桥梁的颤振性能有着重要的影响,因此研究不同风攻角下主梁的颤振机理有重要意义.以扁平箱梁为研究对象,基于不同攻角下的颤振导数,采用双模态耦合解法掌握了颤振性能,继而通过分析气动阻尼、相位差和气动力幅值的变化研究了颤振机理.研究结果表明:在0°和3°攻角下,非耦合气动力为扁平箱梁断面提供了较大的正阻尼,颤振临界风速较高;在5°攻角下,非耦合气动力产生的正阻尼显著减小,使得耦合气动力产生的负阻尼迅速增加,导致颤振临界风速显著降低;耦合运动相位角增大是大攻角下气动负阻尼增加的主要原因,耦合气动力振幅则对颤振风速没有影响;此颤振机理表明大攻角下扁平箱梁颤振性能的弱化是由耦合效应增大引起,而非扭转运动产生的气动负阻尼引起.   相似文献   

9.
П型断面主梁为气动钝体结构,在非线性自激力作用下,极易发生软颤振现象.以某П型断面叠合梁斜拉桥为研究对象,通过节段模型风洞试验,研究了各种气动措施对П型断面主梁软颤振性能的影响.研究结果表明:П型断面主梁软颤振表现为弯扭自由度耦合的单频振动特征,且随着风速的增加,竖向振动参与度系数先减小后增大;安装风嘴可以增大系数,其振幅服从正态分布,振幅波动范围随风速及攻角变化而变化;风攻角为负时,П型断面主梁最易发生软颤振;设置桥面附属设施会提高软颤振的临界风速、减小软颤振的扭转振幅及振幅增长速率;设置风嘴会显著降低软颤振的振动响应,采用尖风嘴可以改善主梁的软颤振性能,且随着风嘴变尖,软颤振的临界风速有提高的趋势,软颤振扭转振幅有下降的趋势;П型断面主梁底部设置中央稳定板对其软颤振性能的影响不明显.  相似文献   

10.
近海流线型箱梁主梁距水面较低时,气动特性极易受到极端波浪边界的干扰.为研究极端波浪边界干扰下流线型箱梁气动特性,以孤立波浪模拟极端波浪,基于FLUENT软件,采用铺层网格技术建立了模拟运动孤立波浪边界干扰下流线型箱梁气动特性的数值模型;利用所建立并验证的数值模型研究了不同参数下运动孤立波浪边界对流线型箱梁气动特性(静气动力系数、涡量场以及平均压力系数和脉动压力系数分布)的干扰.分析结果表明:不同孤立波浪边界运动速度干扰下流线型箱梁气动特性明显区别于无波浪工况;随波浪边界运动,迎风角处剪切层方向相比于梁底转折角处(8°风攻角)及梁顶转折角处(-8°风攻角)剪切层方向变化明显;在运动孤立波浪边界干扰下,箱梁抖振响应会随风攻角幅值增大呈增大趋势.  相似文献   

11.
为研究流线型箱梁的涡激振动特性及涡振抑振措施,以某大跨度钢箱梁斜拉桥为工程背景,通过1:50节段模型风洞试验研究了主梁断面涡激振动响应;采用计算流体力学(computational fluid dynamic, CFD)分析主梁断面的二维流场. 研究结果表明,检修车轨道处漩涡脱落明显,对主梁断面涡激振动性能影响较大;导流板位置从检修车轨道外侧移动到检修车轨道内侧,主梁断面升力系数均方根值减小了24%;在检修车轨道内侧设置导流板,可以有效抑制主梁涡激振动.   相似文献   

12.
大跨度桥梁主梁沿跨向涡激振动响应计算   总被引:2,自引:0,他引:2  
为向抑振提供准确的参考数据,基于单自由度涡激振动经验线性模型,结合主梁振型、阻尼和涡激力相关性,导出了主梁沿跨向竖向、扭转涡激振动响应,建立了大跨度桥梁主梁沿跨向涡激振动描述体系,并探讨了节段模型涡激振动识别气动参数的方法.以一大跨度斜拉桥为例,计算了主梁在不同风攻角下涡激力相关性及沿跨向竖向、扭转涡激振动响应.结果表明,受涡激力相关性作用,涡激振动振幅沿跨向衰减较快.  相似文献   

13.
结合某大跨悬索桥所在山区地形,研究了漏斗型峡谷这一特殊构造地形的桥址区平均风特性,为大跨度桥梁在漏斗型峡谷地区的抗风设计提供依据.首先,建立实际地形的数值模型,并利用Fluent软件对24个不同来流工况进行比较分析;然后,将整体模拟结果与实测结果进行对比,验证数值模拟的合理性;最后,通过模拟结果的对比分析,探讨漏斗型峡谷桥位对风速大小、风攻角、风向角在不同来流方向的影响规律,分析平均风速随攻角分布的特点以及不同位置处的竖向风剖面特性.研究结果表明:漏斗型峡谷桥址区存在明显峡谷风加速效应;漏斗型地形对桥址区来流的攻角和风向分别表现为弱扰乱性和高导向性,来流攻角和风向分别稳定集中在-5°~0°和25°~30°;峡谷中风速对攻角变化的敏感性更高.  相似文献   

14.
介绍箱形梁变形的特点,分析在不同斜率下斜支撑连续钢箱梁的变形。根据具体的试验规划,建立支撑线与梁横向交角为0°、15°、30°、45°的三跨连续钢箱梁的试验模型。利用ABAQUS通用有限元程序建立与试验相对应的计算模型。其有限元计算结果与试验数据吻合较好。通过试验数据采集和有限元计算,主要考虑钢箱梁在弹性工作状态下的节点竖向位移、纵向位移以及不同斜率下的挠度,对比分析斜率对钢箱梁变形的影响。  相似文献   

15.
为了准确把握扁平箱梁的颤振性能,采用节段模型风洞试验和颤振计算相结合的方法,研究了扁平箱梁断面在不同风攻角下颤振临界风速计算值与试验值的一致性.首先通过强迫振动风洞试验获得了某箱梁断面模型颤振导数;然后通过耦合颤振闭合解法获得了不同动力参数条件下的颤振临界风速;最后通过弹簧悬挂节段模型风洞试验测试获得了相同参数条件下的颤振临界风速.计算值和试验值对比结果表明:在0°攻角下扁平箱梁模型颤振临界风速的计算值与试验值保持一致,6种工况下两者差异分别为0.12%、0.50%、4.90%、4.10%、4.84%和1.43%;当风攻角为3°和5°时,颤振临界风速的计算值与试验值较难保持一致,最大差异值可到10.4%;通过对比颤振因子在计算和试验条件下的离散性,在排除非线性气动力和结构阻尼的影响后,推测造成此差异的原因是耦合颤振运动中相位角的变化引起了颤振导数的变化.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号