首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
轮对摇头运动对轮轨滚动接触蠕滑率/力的影响   总被引:3,自引:0,他引:3  
用数值分析方法分析了单轮对的摇头运动对其左右轮轨滚动接触斑上蠕滑率/力的影响。在轮轨滚动接触蠕滑率/力关系分析方面,利用了Kalker的三维弹性体非赫兹滚动接触计算模型。通过分析计算可知,轮对摇头角运动参量是影响轮轮之间横向蠕滑力的主要因素。  相似文献   

2.
非赫兹接触轮轨蠕滑力数表TPLR的研究   总被引:5,自引:1,他引:4  
本文介绍了直线轨道上单轮对运动状态蠕滑率和蠕滑力关系律数表的编制方法。数表中轮轨蠕滑率/力计算模型是非赫兹型的。  相似文献   

3.
为了掌握车辆爬轨脱轨机理及主要影响因素,分析了轮对的三维空间受力,推导了轮轨横向力和垂向力比值的一般表示式,假设车轮在达到最大轮缘接触角时为脱轨的临界状态,并认为这时轮轨间出现完全摩擦滑动,导出了不考虑轮对摇头角的临界脱轨判别的二维准则与考虑轮对摇头角和轮轨蠕滑率效应的三维脱轨判别准则,给出了轮轴脱轨系数的定义,采用轮轴脱轨系数和轮重减载率进行脱轨的判别。仿真计算结果表明:二维脱轨判别准则与三维准则相比偏于保守;摇头角越小甚至变负,越有利于防止脱轨,摇头角越大,三维准则的临界脱轨曲线越接近于二维准则的;减小轮轨摩擦系数与增大轮缘角均有利于防止脱轨的发生。  相似文献   

4.
为研究岔区轮轨匹配关系和经典轮轨接触理论对岔区的适用性,建立了岔区轮轨接触有限元模型,编写了数种岔区法向力及切向力计算程序. 以18号高速道岔转辙区及辙叉区典型断面为例,在法向对比了赫兹、半赫兹、Kalker三维非赫兹滚动接触理论与有限元模型在接触斑面积和接触应力上的差异,切向对比了基于赫兹和半赫兹的FASTSIM算法、Polach模型和CONTACT程序在不同工况下的蠕滑力差异. 计算结果表明:有限元模型考虑了轮轨材料应力应变特性,更接近实际运用工况,赫兹、半赫兹、Kalker三维非赫兹与有限元法接触斑面积分别最大相差50.42%、17.83%和24.78%,最大接触应力相差60.28%、25.25%和32.37%; 各工况下4种切向力模型蠕滑力随蠕滑率的变化趋势相同,同一工况下基于赫兹和半赫兹的FASTSIM算法和Polach模型与CONTACT计算结果最大相差8.08%、5.19%、9.70%; 综合岔区轮轨法向、切向计算精度和计算效率,半赫兹接触理论结合FASTSIM算法在岔区大批量的数据处理中更具优势.   相似文献   

5.
钢轨扣件失效对列车动态脱轨的影响   总被引:2,自引:3,他引:2  
建立了非对称车辆/轨道耦合动力学模型,分析轨道扣件失效对车辆动态脱轨的影响,考虑离散轨枕支承对车辆/轨道耦合作用的影响,通过假设轨道系统刚度沿纵向分布发生突变来模拟扣件组失效状态,推导了考虑钢轨横向和垂向以及扭转运动的轮轨滚动接触蠕滑率计算公式,利用Hertz法向接触理论和沈氏蠕滑理论计算轮轨法向力及轮轨滚动接触蠕滑力,采用新型显式积分法求解车辆/轨道耦合动力学系统运动方程,通过数值分析计算,得到轮轨横垂向力之比、轮重减载率、脱轨危险状态的持续时间和轮对踏面上轮轨接触点位置的变化。连续5个钢轨扣件不同程度失效对列车动态脱轨的影响的数值模拟结果表明,如果失效因子从0.8增大到1.0,即钢轨扣件经历从接近完全松脱到完全松脱,钢轨扣件失效对列车动态脱轨影响呈指数规律。  相似文献   

6.
基于Polach大纵向蠕滑理论的轮轨接触模型,确定了铁道车辆在制动工况下,轮轨黏着系数达到饱和时的轮轨蠕滑率。以闸瓦压力为优化对象,以轮轨蠕滑率为目标函数,在SIMPACK环境下构建了考虑制动系统的车辆动力学模型。通过ARX系统辨识技术,在SIMULINK环境下构建了轮轨蠕滑率响应的参照系统。为了使车辆模型与参照模型的蠕滑率在制动过程中保持一致,基于MIT自适应控制技术对制动时车辆的蠕滑率响应进行了跟踪,以实现对闸瓦压力施加方案的优化。计算结果表明:与一般闸瓦压力施加方案比较,优化后的闸瓦压力使轮轨最大蠕滑率下降了71.6%,使制动结束时的车速下降了11.8%,说明优化后的闸瓦压力不但能有效避免轮轨间的擦伤,还能够在一定程度上缩短车辆的制动距离。  相似文献   

7.
根据轮轨系统坐标系间的变换关系,在准静态条件下建立了轮轨接触斑三维受力分析模型,推导了考虑轮对摇头角与轮轨蠕滑力的三维脱轨系数计算公式,得到了脱轨临界状态时三维脱轨系数临界值的计算方法;以LMA车轮踏面与CHN60钢轨廓形为例,分析了轮对摇头角与摩擦因数对三维脱轨系数临界值的影响规律,并与Nadal脱轨系数临界值进行了对比;为简化三维脱轨系数的计算方法,根据Shen-Hedrick-Elkins蠕滑模型讨论了不同轮对摇头角、摩擦因数与垂向力条件下Kalker线性合成蠕滑力与3倍库伦摩擦力间的比值关系;分析了横向蠕滑力与纵向蠕滑力的比值随轮对摇头角与摩擦因数的变化规律,提出了一种准静态条件的三维脱轨系数简化计算方法,并与精确公式计算结果进行了对比。分析结果表明:与三维脱轨系数临界值相比,当轮对摇头角在1.5°以内时,纵向蠕滑力在切向力中的占比要明显大于横向蠕滑力,造成Nadal脱轨系数临界值具有一定的保守性,但在轮对摇头角较大时,横向蠕滑力在切向力中的占比达到了90%以上,Nadal与三维脱轨系数临界值计算结果基本相同;车轮脱轨临界状态下轮轨接触斑内已达到纯滑动状态,横向蠕滑力和纵向蠕滑力的比值基本不受摩擦因数影响,并与轮对摇头角存在强线性关系;与精确公式相比,三维脱轨系数简化计算方法的误差在±5%以内,可以满足工程应用的要求。  相似文献   

8.
应用Kalker 的三维弹性体非赫弱滚动接触理论, 将运动于直线轨道上的单轮对蠕滑率 ?力关系, 建立在TPLR (非赫兹轮轨蠕滑力数表) 中。分析了不同正压力所对应的蠕 滑力值以及用表中的数值修正的蠕滑力值的精度。简单介绍了该表的使用方法。   相似文献   

9.
应用Kalker的三维弹性体非赫弱滚动接触理论,将运动于直线轨道上的单轮对蠕滑率/力关系,建立在TPLR(非赫兹轮轨蠕滑力数表)中,分析了不同正压力所对应的蠕骨力值以及用表中的数值修正的蠕滑力值的精度。简单介绍了该表的使用方法。  相似文献   

10.
本文讨论了由轨道对车轮的简谐动态输入引起的线性化简谐蠕滑力的影响。用弹性理论并空间假设下的数值解法。同时考虑接触区内粘着区和滑动区的非稳态变化和切向面力的非稳态变化,反复迭代,计算了非稳态的蠕滑系数,得出线性的非稳态蠕滑率-力关系,并将其与沈志云-赫居里克-埃尔金斯理论结合,推广到了非线性的惰形。  相似文献   

11.
缩尺轮轨模型中钢轨波磨的相似性   总被引:2,自引:0,他引:2  
为了研究地铁小半径曲线线路的钢轨波磨现象,基于轮轨间饱和蠕滑力引起摩擦自激振动导致钢轨波磨的理论,对全尺寸和缩尺轮轨模型的相似性进行了研究. 分别建立1∶1和1∶5车辆-轨道系统的动力学模型,确定每个车辆模型在通过小半径曲线线路时前转向架导向轮对与轨道间的蠕滑力饱和情况;根据动力学仿真所得轮轨接触参数,建立轮对-轨道-轨枕有限元模型;采用复特征值分析研究各个轮轨系统的稳定性. 研究结果表明:全尺寸和缩尺车辆模型分别通过小半径曲线线路时,导向轮对内外车轮上的蠕滑力均接近饱和;轮对两端垂向悬挂力的偏差小于3%,轮轨接触角的偏差小于5%;相似不稳定振动模态对应的频率偏差均小于3%;缩尺轮轨模型在动力学表现及稳定性方面与全尺寸模型具有良好的相似性,故可用缩尺模型对钢轨波磨的形成机理进行理论与试验研究.   相似文献   

12.
抑制轮轨摩擦自激振动的扣件结构多参数拟合研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究扣件结构参数对轮轨摩擦自激振动的影响,基于轮轨摩擦耦合自激振动的观点建立了小半径曲线轨道整体道床支承的轮轨系统有限元模型;通过现场测试和数值仿真验证了轮轨摩擦自激振动模型,进而基于该模型研究了扣件结构中各参数对轮轨摩擦自激振动的影响;综合考虑多因素之间的相互影响,采用最小二乘法得到了预测轮轨摩擦自激振动发生可能性的扣件结构多参数拟合方程. 研究结果表明:在整体道床支承的小半径曲线轨道上,轮轨间饱和蠕滑力引起的轮轨摩擦自激振动是诱导该区间钢轨波磨的关键因素,轮轨系统的摩擦自激振动主要发生在300 Hz和320 Hz;根据扣件结构的多参数拟合方程,在适当范围内,扣件的垂向阻尼为1000 N?s/m,扣件间距为1.0 m组合时,可以降低小半径曲线轨道上轮轨系统摩擦自激振动发生的可能性,从而降低钢轨波磨发生的可能性.   相似文献   

13.
横风下车辆-轨道耦合动力学性能   总被引:2,自引:0,他引:2  
应用多体系统动力学理论,建立了车辆-轨道耦合动力学模型,利用新型显式积分法求解动力学方程组,利用赫兹非线性弹性接触理论计算轮轨法向力,利用沈氏理论计算轮轨蠕滑力,编写了车辆-轨道耦合动力学计算程序,研究了轨道结构对高速列车动力学性能的影响,分析了不同横风环境下高速列车动力学性能和列车姿态。研究结果表明:当列车运行速度为...  相似文献   

14.
高速铁路无缝钢轨断缝瞬态冲击行为分析   总被引:1,自引:1,他引:0  
无缝线路钢轨焊缝及其热影响区在温度力作用下可能发生钢轨折断形成断缝. 为了研究钢轨折断对列车运营安全的影响,对轮轨接触受力特性及其材料高频动态响应进行了分析. 首先,建立了ANSYS/LSDYNA三维轮轨瞬态滚动接触有限元模型;然后,根据不同速度轮轨力时域响应规律,选择了合适的模型计算工况,并且通过计算轮轨接触受力特性和材料高频动态响应,分析了车轮跨越断缝的安全问题;最后,通过小波变换获取了车轮跨越断缝时轮轨力的频域分布. 结果表明:断缝处轮轨高频冲击力峰值随断缝长度变化先减小后增大,转折点处断缝长度与行车速度负相关;车轮通过断缝时,钢轨最大剪切应力超过材料破坏极限,易导致钢轨材料脆断;轮轨力时频图中存在两个特殊频率成分,分别对应高频冲击荷载(1 500 Hz左右)及二次冲击荷载(450 Hz左右),断缝长度对轮轨力频域分布影响较小.   相似文献   

15.
为了保障车辆过岔的安全性并延长道岔使用寿命,基于刚柔耦合方法建立了精细化的车辆-道岔动力分析模型,研究了过岔方式、行车速度对车岔系统动力特性的影响规律,并对岔区设置轨距拉杆、改变岔区轨底坡、加宽尖轨及心轨断面3种措施的效果进行了评估.研究表明:设置轨距拉杆最大可以降低43.0%的轮轨横向力及5.1%的轮轨垂向力;当岔区轨底坡从1:40增加至1:20,直股线路 可降低10.7%的轮轨横向力及4.0%的轮轨垂向力,侧股线路轨可降低16.7%的轮轨横向力及14.8%的轮轨垂向力;尖轨、心轨断面宽度增加2 mm时引起的轮轨相互作用增幅最大为8.3%,但可降低18.8%的钢轨动弯应力.   相似文献   

16.
Angle of attack and lateral force are two important parameters influencing wheel-rail wear. This paper deals with the question of influences of the angle of attack and the lateral force on the wear of rail. A series of experiments are conducted on 1/4 JD-1 Wheel/Rail Tribology Simulation Facility. The angles of attack selected in the tests are 0°16′30″, 0°37′40″ and 1°0′0″ respectively. The lateral forces selected in the tests are 0.694 kN, 1.250 kN and 2.083 kN, respectively corresponding to the lateral forces of 25 kN, 45 kN and 75 kN measured in the field, with the aim of keeping the same ratio of L/V between laboratory and field conditions. It is found that the larger the angle of attack is, the more serious the wear of rail is. The relation of rail wear rate versus angle of attack is non-linear, and the relation of rail wear rate versus lateral force is approximately linear. The influence of angle of attack is more serious than that of lateral force. For the tractive wheelset, the wear index involving linear and quadratic function terms of angle of attack has good agreement with the limited experimental data. Some conclusions are given.  相似文献   

17.
为了建立轮轨磨损与损伤实验的统一标准,在目前实验方法研究轮轨磨损与损伤机制的基础上,提出了基于接触斑能量耗散轮轨磨损与损伤机制的分析方法. 针对轮轨磨损与损伤实验缺乏统一标准的现状,对不同实验方法获得的磨损与损伤结果进行对比分析;通过对不同实验结果的对比分析,提出了基于接触斑能量耗散轮轨磨损与损伤机制的分析方法,并分析了不同轮轨材料与实验方法的单位面积轮轨接触斑耗散能-磨损率曲线的变化规律. 研究结果表明:根据轮轨材料的单位面积轮轨接触斑耗散能-磨损率变化曲线规律及轮轨损伤特征,可将轮轨磨损划分为3个分区:轻微磨损、严重磨损、灾难性磨损,单位面积轮轨接触斑耗散能-磨损率曲线在实际应用中可预测轮轨磨损;轮轨接触斑耗散能准确地表征轮轨磨损率和损伤形式,可用于轮轨磨损与损伤数据的对比分析.   相似文献   

18.
轮轨接触关系计算方法   总被引:2,自引:1,他引:2  
为了在车辆-轨道耦合动力学仿真中能更真实反映轮轨接触状态,利用迹线法原理和轨廓分区法,在考虑轮对的横移、浮沉、摇头、侧滚和左右钢轨的横移、浮沉、侧滚的条件下,分别计算轨顶和轨侧区域与车轮的最小轮轨间隙量,以此来判断轮轨的真实接触状态:正常的一点接触、非正常的一点接触、两点接触和车轮完全悬浮,并根据非线性赫兹接触理论分别求得两接触点处的轮轨法向力。轮轨接触关系仿真结果表明根据轮轨接触关系计算方法得出的轮轨接触关系符合车辆在实际线路上的运行状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号