首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
There is a need for soil-to-plant transfer factors of radionuclides that take into account all possible crops on all soil varieties to support dose assessment studies. Because only limited experimental data exist for worldwide soil systems, such values should necessarily have a generic character. This paper describes a generic system for 137Cs, mainly based on a reference soil-to-plant transfer factor which depends solely on soil properties such as nutrient status, exchangeable K-content, pH and moisture content. Crops are divided into crop groups, cereals serving as reference group. The transfer of other crop groups can be calculated by multiplying data for cereals by a conversion factor. Existing data present in the IUR (International Union of Radioecologists) databank and in large part the work of a FAO (Food and Agriculture Organisation)/IAEA(International Atomic Energy Agency)/IUR project on tropical systems provided the basis for the derivation of the conversion factors and reference values.  相似文献   

2.
Rice is a staple food in Japan and other Asian countries, and the soil-to-plant transfer factor of 137Cs released into the environment is an important parameter for estimating the internal radiation dose from food ingestion. Soil and rice grain samples were collected from 20 paddy fields throughout Aomori Prefecture, Japan in 1996 and 1997, and soil-to-polished rice transfer factors were determined. The concentrations of 137Cs, derived from fallout depositions, stable Cs and K in paddy soils were 2.5-21 Bq kg(-1), 1.2-5.3 and 5000-13000 mg kg(-1), respectively. The ranges of 137Cs, stable Cs and K concentration in polished rice were 2.5-85 mBq kg(-1) dry wt., 0.0005-0.0065 and 580-910 mg kg(-1) dry wt., respectively. The geometric mean of soil-to-polished rice transfer factor of 137Cs was 0.0016, and its 95% confidence interval was 0.00021-0.012. The transfer factor of 137Cs was approximately 3 times higher than that of stable Cs at 0.00056, and they were well correlated. This implied that fallout 137Cs, mostly deposited up to the 1980s, is more mobile and more easily absorbed by plants than stable Cs in the soil, although the soil-to-plant transfer of stable Cs can be used for predicting the long-term transfer of 137Cs. The transfer factors of both 137Cs and stable Cs decreased with increasing K concentration in the soil. This suggests that K in the soil was a competitive factor for the transfers of both 137Cs and stable Cs from soil-to-polished rice. However, the transfer factors of 137Cs and stable Cs were independent of the amount of organic materials in soils.  相似文献   

3.
Transfer factors of (40)K, (238)U, (210)Pb, and (210)Po from soil to some agriculture crops in various locations in south of Syria (Dara'a and Assuwaydaa districts) have been determined. Soil and vegetable crops (green pepper, cucumber, tomato, and eggplant), legumes crops (lentil, chickpea, and broad bean), fruit trees (apple, grape, and olives) and cereals (barley and wheat) were collected and analyzed for (238)U, (210)Pb, and (210)Po. The results have shown that higher transfer factors (calculated as Bqkg(-1) dry wt. plant material per Bqkg(-1) dry wt. soil) for (210)Po, (210)Pb and (238)U were observed in vegetable leaves than fruits and cereals leaves; the highest values of transfer factor (TF) for (238)U were found to be 0.1 for straw of chickpea. Transfer factors for (210)Po varied between 2.8x10(-2) and 2 in fruits of eggplant and grain of barley, respectively. In addition, several parameters affecting transfer factors of the radionuclides were evaluated. The results can be considered as base values for TF of natural radionuclides in the region.  相似文献   

4.
Ruthenium-106 is of potential radioecological importance but soil-to-plant Transfer Factors for it are available only for few plant species. A Residual Maximum Likelihood (REML) procedure was used to construct a database of relative (103/106)Ru concentrations in 114 species of flowering plants including 106 species from experiments and 12 species from the literature (with 4 species in both). An Analysis of Variance (ANOVA), coded using a recent phylogeny for flowering plants, was used to identify a significant phylogenetic effect on relative mean (103/106)Ru concentrations in flowering plants. There were differences of 2,465-fold in the concentration to which plant species took up (103/106)Ru. Thirty-nine percent of the variance in inter-species differences could be ascribed to the taxonomic level of Order or above. Plants in the Orders Geraniales and Asterales had notably high uptake of (103/106)Ru compared to other plant groups. Plants on the Commelinoid monocot clades, and especially the Poaceae, had notably low uptake of (103/106)Ru. These data demonstrate that plant species are not independent units for (103/106)Ru concentrations but are linked through phylogeny. It is concluded that models of soil-to-plant transfer of (103/106)Ru should assume that; neither soil variables alone affect transfer nor plant species are independent units, and taking account of plant phylogeny might aid predictions of soil-to-plant transfer of (103/106)Ru, especially for species for which Transfer Factors are not available.  相似文献   

5.
The factors governing chlorine transfer from Phaeozem and Greyzem soils to various important crop species (foodstuff and forage) were determined in natural conditions in the Kiev region of Ukraine. The stable chlorine concentration ratio (CR) values were the lowest in apple (0.5+/-0.3) and strawberry (2+/-1), higher in vegetables (5+/-3), seeds (15+/-7) and reached a maximum in straw (187+/-90). The average CR values of 36Cl were estimated for the most important crops using all experimental data on 36Cl and stable chlorine transfer into plants from various soils. It was experimentally shown that boiling potatoes in water leads to an equilibrium between 36Cl specific content in the water and moisture in the cooked potato. The 36Cl processing factor (PF) for boiling various foodstuffs is equal to the ratio of water mass in the cooked foodstuff to the total water mass (in the food and the decoction). 36Cl PF for cereal flour can be estimated as 1. The 36Cl processing factor for dairy products is equal to the ratio of residual water mass in the product to initial water mass in milk. At a 36Cl specific activity in soil of 1 Bq kg-1, the estimated annual dietary 36Cl intake into human organism (adult man) is about 10 kBq. Sixty to seventy percent of the above amount will be taken in via milk and dairy products, 7-16% via meat, 14-16% via bread and bakery items and 8-12% via vegetables. The highest annual 36Cl intake, 10.7 kBq, is predicted for 1-year-old children. The expected effective doses from annual 36Cl intake are higher for younger age groups, increasing from 0.008 mSv in adults to 0.12 mSv in 1-year-old children.  相似文献   

6.
Two types of soils (Eutric Fluvisol and Chromic Luvisol) and two crops (wheat and cabbage) were investigated for determination of the transfer of 137Cs from soil to plant. Measurements were performed using gamma-spectrometry. Results for the soil characteristics, transfer factors of the radionuclides (TF), and conversion factors (CF) (cabbage/wheat) were obtained. The transfer of 137Cs was higher for Chromic Luvisol for both the plants. Statistically significant dependence of TF of 137Cs on its concentration in soil was established for cabbage. Dependence between K content in the soil and the transfer factor of 137Cs was not found due to the high concentrations of available K. Use of bioconcentration factor (BCF) (ratio between the activity concentration of a radionuclide in a reference plant to its concentration in another plant) is demonstrated and proposed for risk assessment studies.  相似文献   

7.
Under greenhouse condition a pot culture investigation was carried out using Inceptisol soil (Typic Haplustept) contaminating with (134)Cs @ 1muCikg(-1) soil to study the transfer factor to Mustard, Gram, Spinach and Wheat crops as influenced by potassium application (0, 27.3, 54.6 and 81.9mgKkg(-1) soil). Potassium application in general improved the biomass, grain yield and also the potassium concentration in all the crops. Irrespective of the crops, (134)Cs transfer factor to straw and grain was highest in control treatment (no K addition) and found to decrease significantly with increase in K application levels. The (134)Cs uptake was highest in Spinach followed by Mustard, Gram and Wheat crops. The weighted transfer factor values (straw plus grain) to Spinach, Mustard, and Gram were observed to be 5.54, 4.38 and 2.20 times higher as compared to Wheat crop.  相似文献   

8.
According to the soil-to-plant transfer concept generally used in dose assessment modeling, the plant uptake of a radionuclide should depend linearly on its concentration in the soil. In order to validate this concept for (90)Sr in a semi-natural ecosystem, plant and soil samples were taken at 100 plots of a 100 x 100 m(2) area within an alpine pasture near Berchtesgaden, Germany. At three plots, the vertical distribution of (90)Sr in the soil was determined in addition. A statistically significant correlation between the soil and plant concentration of (90)Sr was not detectable (Spearman correlation coefficient R=-0.116, p>0.05) within the range of the Sr-concentration covered (15-548 Bq kg(-1) dry soil and 17-253 Bq kg(-1) dry plant material). Thus, the prerequisite of the soil-to-plant transfer concept was not fulfilled for (90)Sr at this site. Organic carbon and total nitrogen were also determined in the soil samples. Both elements were highly correlated (R=0.912, p<0.001), their ratio being C/N=10.9+/-0.7. While C was positively correlated with the (90)Sr concentrations in the soil (R=0.342, p<0.001), negative correlations were observed for the plant concentrations (R=-0.286, p<0.01) and the concentration ratios (R=-0.444, p<0.001) of (90)Sr. These results are compared with those recently obtained for (137)Cs by Bunzl et al. (J Environ Radioactiv 48 (2000) 145).  相似文献   

9.
The objective of this study was to compile data, based on an extensive literature survey, for the soil solid–liquid distribution coefficient (Kd) and soil-to-plant transfer factor (TF) for nickel. The Kd best estimates were calculated for soils grouped according to texture and organic matter content (sand, loam, clay and organic) and soil cofactors affecting soil–nickel interaction, such as pH, organic matter, and clay content. Variability in Kd was better explained by pH than by soil texture.  相似文献   

10.
In the effort to predict the risks associated with contaminated soils, considerable reliance is placed on plant/soil concentration ratio (CR) values measured at sites other than the contaminated site. This inevitably results in the need to extrapolate among the many soil and plant types. There are few studies that compare CR among plant types that encompass both field and garden crops. Here, CRs for 40 elements were measured for 25 crops from farm and garden sites chosen so the grain crops were in close proximity to the gardens. Special emphasis was placed on iodine (I) because data for this element are sparse. For many elements, there were consistent trends among CRs for the various crop types, with leafy crops > root crops ≥ fruit crops ≈ seed crops. Exceptions included CR values for As, K, Se and Zn which were highest in the seed crops. The correlation of CRs from one plant type to another was evident only when there was a wide range in soil concentrations. In comparing CRs between crop types, it became apparent that the relationships differed for the rare earth elements (REE), which also had very low CR values. The CRs for root and leafy crops of REE converged to a minimum value. This was attributed to soil adhesion, despite the samples being washed, and the average soil adhesion for root crops was 500 mg soil kg−1 dry plant and for leafy crops was 5 g kg−1. Across elements, the log CR was negatively correlated with log Kd (the soil solid/liquid partition coefficient), as expected. Although, this correlation is expected, measures of correlation coefficients suitable for stochastic risk assessment are not frequently reported. The results suggest that r ≈ −0.7 would be appropriate for risk assessment.  相似文献   

11.
The influence of soil texture on the distribution and availability of (238)U, (230)Th, and (226)Ra in soils was studied in soil samples collected at a rehabilitated uranium mine located in the Extremadura region in south-west Spain. The activity concentration (Bqkg(-1)) in the soils ranged from 60 to 750 for (238)U, from 60 to 260 for (230)Th, and from 70 to 330 for (226)Ra. The radionuclide distribution was determined in three soil fractions: coarse sand (0.5-2mm), medium-fine sand (0.067-0.5mm), and silt and clay (<0.067 mm). The relative mobility of the natural radionuclides in the different fractions was studied by comparison of the activity ratios between radionuclides belonging to the same radioactive series. The lability of these radionuclides in each fraction was also studied through selective extraction from the soils using a one-step sequential extraction scheme. Significant correlations were found for (238)U, (230)Th, and (226)Ra between the activity concentration per fraction and the total activity concentration in the bulk soil. Thus, from the determination of the activity concentration in the bulk soil, one could estimate the activity concentration in each fraction. Correlations were also found for (238)U and (226)Ra between the labile activity concentration in each fraction and the total activity concentration in bulk soil. Assuming that there is some particle-size fraction that predominates in the process of soil-to-plant transfer, the parameters obtained in this study should be used as correction factors for the transfer factors determined from the bulk soil in previous studies.  相似文献   

12.
In this work, soil-to-plant transfer factors of radiocaesium are predicted based on soil properties such as pH, organic matter content, exchangeable K+ and clay content valid for the tropical environments in Bangladesh, China and Japan, and using a previously published model. Due to insufficient data of soil properties in the selected regions, the average values of pH, organic matter content, exchangeable K+ and clay content were taken as the input model parameters within the ranges given for Asia. Nevertheless, a complete set of soil properties of Japanese soils was used to compare the measured and calculated TF values of radiocaesium for radish. The calculated TF values for radiocaesium are comparable with the measured values especially for leafy parts of a plant. However, calculated values for rice, an important crop in Asia are found to overestimate the measured values due to an overestimate of calculated CECs in soils in the selected regions. The empirical parameters used in the model need to be re-evaluated for the specific part of a plant and/or for a variety of different plants. Alternatively, a general conversion factor for each part of a plant and/or for a variety of different plants for a specific region is suggested for tropical environments.  相似文献   

13.
Very little is known of the factors controlling soil-to-plant transfer of radionuclides in tropical environments. As part of an IAEA/FAO coordinated research project (CRP) designed to elucidate some of those factors, near-surface samples of two agricultural red-earth soils (Blain and Tippera) were collected from a study site in the Northern Territory. The climate is tropical monsoonal with crops being grown over the wet season from December to March/April. It is important to understand soil variables that may be related to this dramatic seasonality. In this investigation, soil redox state and microbial populations were assessed before and after the growing season with a view to generating hypotheses for future evaluation. The X-ray absorption near edge structure (XANES) technique was used to determine overall changes in the solid-state redox speciation of Fe and Mn in soils across the growing period. Fe speciation did not change but approximately 10% of the total Mn was oxidised from Mn(II) to Mn(III) and Mn(IV) in both soils between October 1999 and April 2000. An apparent disconnect between Fe and Mn was not unexpected given the >10 times higher concentration of Fe in the soils compared with Mn. These results have implications for the bioavailability of redox sensitive radionuclides such as Tc and Pu. Similarly, microbial population estimates were derived before and after the growing period. Total bacterial populations did not vary from 10(6) to 10(7) colonies per gram. Fungal populations increased over the growing season from 3-6 x 10(5) to 1-4 x 10(6) colonies per gram of soil. Fungi have the potential to decrease soil pH and hence increase the bioavailability of radionuclides such as Cs. In addition, fungi act to facilitate plant nutrition. This could lead to enhanced accumulation of nutrient analogues (e.g. Sr and Ra for Ca; Tc for Mn), but this effect may be masked by improved biomass production.  相似文献   

14.
Cadmium and lead have been identified as very toxic metals, which are widely present in the environment due to natural and anthropogenic emissions. Many studies have shown that the food chain is the main pathway of cadmium and lead transfer from the environment to humans. It is well documented that many factors will affect their transfer through food chains. Previous investigations on heavy metals were mostly concentrated on one contaminant in isolation. However, in real environments, exposure to mixtures of metals is ubiquitous such that cadmium pollution is invariably being associated with lead and zinc, etc. This study focuses on the contamination and health effects of the metal mixtures. For this purpose, a dietary survey was taken for 3 groups in Nanning in October 2002. Samples of soils, plants (vegetables), urine and blood of humans were measured for Cd, Fe, Cu, Zn, Ca and Pb, in addition, the urinary indicators of renal dysfunction Albumin (ALB), N-acetyl-beta-D-glucosaminidase (NAG), Beta-2-microglobulin (beta2-MG) and Retinol-binding protein (RBP) in urine were also measured. Results showed that soil contamination with metal mixtures had caused significant renal dysfunction of the local residents living in the contaminated area, and the dose-response curve was somewhat altered by the mixed contamination of Cd and Pb as well as the intake of other minerals. The importance of mixtures of metal contamination and human health are also discussed in this paper.  相似文献   

15.
RSP (Radioecological Software Package) is an interactive support system that simulates the behaviour of radionuclides in semi-natural environments and the consequences on the population in terms of the external exposure. RSP consists of three modules: the first one, soil mobility, simulates the vertical transport of radionuclide in soil using the mathematical model RABES. The second module, soil -to-plant transfer, simulates the radionuclide soil-to-plant transfer factor reported in the literature. Soil properties, vegetation types and environmental conditions are taken into consideration in the simulation process. In the third module, dose assessment, the dose-rate factor in air at a height of 1 m above ground can be calculated for sources distributed in a slab of finite thickness dn sources which are exponentially distributed with depth. The calculations are performed using DAGES Model, a Monte Carlo algorithm developed to simulated the photon transport for the soil/air configuration. A free copy of RSP can be downloaded from the website: http://imasl-apat.unsl.edu.ar.  相似文献   

16.
17.
The present study was conducted to determine the physico-chemical properties and heavy metal contents in soils under three land uses (agricultural, riverbank and roadside) from areas situated around rivers (Beas and Sutlej) in Punjab, India. Heavy metal contents in wheat samples (grain and fodder) growing in the area were also analyzed in order to find out potential human health risk through wheat consumption. The studied soils under the three land uses were found to be basic in nature with sandy texture, low soil organic matter and other soil nutrients. Comparatively higher amounts of soil nutrients were observed in soils under agricultural land use as compared to riverbank and roadside land uses. The amounts of heavy metals (Cr, Cu, Co and Pb) analyzed in soils were lower than the various national and international maximum permissible limits, but heavy metal contents observed in wheat fodder samples exceeded the maximum permissible limits for fodder. The soil-to-plant metal bioaccumulation factor was found to be highest for Cu (3.812 for soil–wheat grain and 1.874 for soil–wheat fodder), which showed the bioaccumulation of heavy metals from soils to crops, and the wheat straw-to-grain translocation factor was found to be highest for Co (4.375). The hazard index calculated to assess non-carcinogenic health risks was found above 1 for children, meaning that the wheat grains can pose health risks to children.  相似文献   

18.
Cobalt is a naturally occurring element found in rocks, soil, water, plants, and animals and has diverse industrial importance. It is cycled in surface environments through many natural processes (e.g. volcanic eruptions, weathering) and can be introduced through numerous anthropogenic activities (e.g. burning of coal or oil, or the production of cobalt alloys). The environmental behaviour of cobalt in terrestrial environment is relatively poorly studied and in particular where Co is used in industrial processes, the baseline information to support wider and long-term environmental impacts is widely dispersed. To support the adoption of new EU regulations on the risk assessment of chemicals, we review here the various aspects of the environmental chemistry, fate and transport of Co across environmental interfaces and discuss the toxicology and potential for bio magnification and food chain accumulation. The soil-to-plant transfer of Co appears to be viable route to expose lower trophic levels to biologically significant concentrations and Co is potentially accumulated in biomass and top soil. Evidence for further accumulation through soil-invertebrate transfer and to higher trophic levels is suggested by some studies but this is obscured by the relatively high variability of published transfer data. This variation is not due to one particular aspect of the transfer of Co in terrestrial environments. Influences are from the variability of geological sources within soil systems; the sensitivity of Co mobility to environmental factors (e.g. pH) and the variety of life strategies for metal elimination/use within biological species. Toxic effects of Co have been suggested for some soil-plant animal studies however, uncertainty in the extrapolation from laboratory to field is a major limitation.  相似文献   

19.
Radium is one of the prominent potential contaminants linked with industries extracting or processing material containing naturally occurring radionuclides. In this study we investigate if 133Ba and 85Sr can be used as tracers for predicting 226Ra soil-to-plant transfer. Three soil types were artificially contaminated with these radionuclides and transfer to ryegrass and clover was studied. Barium is considered a better tracer for radium than strontium, given the significant linear correlation found between the Ra and Ba-TF. For strontium, no such correlation was found. The relationship between soil characteristics and transfer factors was investigated. Cation exchange capacity, exchangeable Ca+Mg content and soil pH did not seem to influence Ra, Ba or Sr uptake in any clear way. A significant relation (negative power function) was found between the bivalent (Ca+Mg) concentration in the soil solution and the Ra-TF. A similar dependency was found for the Sr and Ba-TF, although less significant.  相似文献   

20.
Measurements of soil-to-plant transfer of (134)Cs, (85)Sr and (65)Zn from two tropical red earth soils ('Blain' and 'Tippera') to sorghum and mung crops have been undertaken in the north of Australia. The aim of the study was to identify factors that control bioaccumulation of these radionuclides in tropical regions, for which few previous data are available. Batch sorption experiments were conducted to determine the distribution coefficient (K(d)) of the selected radionuclides at pH values similar to natural pH values, which ranged from about 5.5 to 6.7. In addition, K(d) values were obtained at one pH unit above and below the soil-water equilibrium pH values to determine the effect of pH. The adsorption of Cs showed no pH dependence, but the K(d) values for the Tippera soils (2300-4100 ml/g) exceeded those for the Blain soils (800-1200 ml/g) at equilibrium pH. This was related to the greater clay content of the Tippera soil. Both Sr and Zn were more strongly adsorbed at higher pH values, but the K(d) values showed less dependence on the soil type. Strontium K(d)s were 30-60 ml/g whilst Zn ranged from 160 to 1630 ml/g for the two soils at equilibrium pH. With the possible exception of Sr, there was no evidence for downward movement of radionuclides through the soils during the course of the growing season. There was some evidence of surface movement of labelled soil particles. Soil-to-plant transfer factors varied slightly between the soils. The average results for sorghum were 0.1-0.3 g/g for Cs, 0.4-0.8 g/g for Sr and 18-26 g/g for Zn (dry weight) with the initial values relating to Blain and the following values to Tippera. Similar values were observed for the mung bean samples. The transfer factors for Cs and Sr were not substantially different from the typical values observed in temperate studies. However, Zn transfer factors for plants grown on both these tropical soils were greater than for soils in temperate climates (by more than an order of magnitude). This may be related to trace nutrient deficiency and/or the growth of fungal populations in these soils. The results indicate that transfer factors depend on climatic region together with soil type and chemistry and underline the value of specific bioaccumulation data for radionuclides in tropical soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号