首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of an upflow anaerobic sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP) was evaluated at different hydraulic retention times (HRTs) using synthetic wastewater in order to obtain the growth substrate (glucose-COD) and 2,4 DCP removal kinetics. Treatment efficiencies of the UASB reactor were investigated at different hydraulic retention times (2-20 h) corresponding to a food to mass (F/M) ratio of 1.2-1.92 g-COD g(-1) VSS day(-1). A total of 65-83% COD removal efficiencies were obtained at HRTs of 2-20 h. In all, 83% and 99% 2,4 DCP removals were achieved at the same HRTs in the UASB reactor. Conventional Monod, Grau Second-order and Modified Stover-Kincannon models were applied to determine the substrate removal kinetics of the UASB reactor. The experimental data obtained from the kinetic models showed that the Monod kinetic model is more appropriate for correlating the substrate removals compared to the other models for the UASB reactor. The maximum specific substrate utilization rate (k) (mg-COD mg(-1) SS day(-1)), half-velocity concentration (K(s)) (mg COD l(-1)), growth yield coefficient (Y) (mg mg(-1)) and bacterial decay coefficient (b) (day(-1)) were 0.954 mg-COD mg(-1) SS day(-1), 560.29 mg-COD l(-1), 0.78 mg-SS g(-1)-COD, 0.093 day(-1) in the Conventional Monod kinetic model. The second-order kinetic coefficient (k(2)) was calculated as 0.26 day(-1) in the Grau reaction kinetic model. The maximum COD removal rate constant (U(max)) and saturation value (K(B)) were calculated as 7.502 mg CODl(-1)day(-1) and 34.56 mg l(-1)day(-1) in the Modified Stover-Kincannon Model. The (k)(mg-2,4 DCP mg(-1) SS day(-1)), (K(s)) (mg 2,4 DCPl(-1)), (Y) (mg SS mg(-1) 2,4 DCP) and (k(d)) (day(-1)) were 0.0041 mg-2,4 DCP mg(-1) SS day(-1), 2.06 mg-COD l(-1), 0.0017 mg-SS mg(-1) 2,4 DCP and 3.1 x 10(-5) day(-1) in the Conventional Monod kinetic model for 2,4 DCP degradation. The second-order kinetic coefficient (k(2)) was calculated as 0.30 day(-1) in the Grau reaction kinetic model. The maximum 2,4 DCP removal rate constant (U(max)) and saturation value (K(B)) were calculated as 0.01 mg COD l(-1) day(-1) and 9.8 x 10(-3) mg l(-1) day(-1) in the Modified Stover-Kincannon model.  相似文献   

2.
Chlorophenol compounds present in many chemical industry wastewaters are resistant to biological degradation because of the toxic effects of such compounds on microorganisms. Synthetic wastewater containing different concentrations of 2,4 dichlorophenol (DCP) was subjected to biological treatment in an activated sludge unit. Effects of feed DCP concentration on COD, DCP, and toxicity removals and on sludge volume index were investigated at a constant sludge age of 10 days and hydraulic residence time (HRT) of 25 h. The Resazurin method based on dehydrogenase activity was used for assessment of toxicity for the feed and effluent wastewater. Percent COD, DCP, and toxicity removals decreased and the effluent COD, DCP, and toxicity levels increased with increasing feed DCP concentrations above 150 mgl(-1) because of inhibitory effects of DCP. Biomass concentration in the aeration tank decreased and the sludge volume index (SVI) increased with feed DCP concentrations above 150 mgl(-1) resulting in lower COD and DCP removal rates. The system should be operated at feed DCP concentrations of less than 150 mgl(-1) in order to obtain high COD, DCP, and toxicity removals.  相似文献   

3.
In order to explore the pathway of the anaerobic biotreatment of the wastewater containing pentachlorophenol (PCP) and ensure the normal operation of Upflow Anaerobic Sludge Blanket (UASB) reactor, the anaerobic sludge under different acclimation conditions were selected to seed and start up UASB reactors. Anaerobic toxicity assays were employed to study the biological activity, the tolerance and the capacity to degrade PCP of different anaerobic granular sludge from UASB reactors. Results showed that the anaerobic granular sludge acclimated to chlorophenols (CPs) could degrade PCP more quickly (up to 9.50mg-PCPg(-1)TVSd(-1)). And the anaerobic granular sludge without acclimation to CPs had only a little activity of degrading PCP (less than 0.07mg-PCPg(-1)TVSd(-1)). Different PCP concentrations (2, 4, 6, 8mgL(-1)) had different inhibition effects on glucose utilization, volatile fatted acidity (VFA)-degrading and methanogens activity of PCP degradation anaerobic granular sludge, and the biological activity declined with the increase in PCP concentration. The methanogens activity suffered inhibition from PCP more easily. The different acclimation patterns of seeded sludge had distinctly different effects on biological activity of the degradation of PCP of anaerobic granular sludge from UASB reactors. The biological activity of the anaerobic granular sludge acclimated to PCP only was also inhibited. This inhibition was weak compared to that of anaerobic granular sludge acclimated to CPs, further, the activity could recover more quickly in this case. In the same reactor, the anaerobic granular sludge from the mid and base layers showed higher tolerance to PCP than that from super layer or if the sludge is unacclimated to CPs, and the corresponding recovery time of the biological activity in the mid and base layers were short. Acetate-utilizing methanogens and syntrophic propinate degraders were sensitive to PCP, compared to syntrophic butyrate degraders.  相似文献   

4.
Due to the toxic nature of chlorophenol compounds present in some chemical industry effluents, biological treatment of such wastewaters is usually realized with low treatment efficiencies. Para-chlorophenol (4-chlorophenol, 4-CP) containing synthetic wastewater was treated in an activated sludge unit at different hydraulic residence times (HRT) varying between 5 and 30 h while the feed COD (2500 mg l(-1)), 4-CP (500 mg l(-1)) and sludge age (SRT, 10 days) were constant. Effects of HRT variations on COD, 4-CP, toxicity removals and on settling characteristics of the sludge were investigated. Percent COD removals increased and the effluent COD concentrations decreased when HRT increased from 5 to 15 h and remained almost constant for larger HRT levels. Nearly, 91% COD and 99% 4-CP removals were obtained at HRT levels above 15 h. Because of the highly concentrated microbial population at HRT levels of above 15 h, low effluent (reactor) 4-CP concentrations and almost complete toxicity removals were obtained. High biomass concentrations obtained at HRT levels above 15 h were due to low 4-CP contents in the aeration tank yielding negligible inhibition effects and low maintenance requirements. The sludge volume index (SVI) decreased with increasing HRT up to 15 h due to high biomass concentrations at high HRT levels resulting in well settling sludge with low SVI values. Hydraulic residence times above 15 h resulted in more than 90% COD and complete 4-CP and toxicity removals along with well settling sludge.  相似文献   

5.
取食品生产废水处理中试工程运行中现有的厌氧颗粒污泥进行活性抑制与恢复试验。通过慢性致毒与急性致毒作用的对比,分析酸性条件对颗粒污泥的抑制作用,研究颗粒污泥的耐酸性,并考察污泥活性恢复方法。结果表明:当进水pH=6.5,颗粒污泥活性受到轻微抑制,不影响系统的稳定运行;当pH值下降至4.5时,COD去除率和产甲烷量均趋于零。同时使用调节进水pH值、降低进水有机负荷、提高进水碱度以及调整水力停留时间等4种方法能有效恢复污泥活性,活性达到抑制前的80%左右。  相似文献   

6.
Eight small-scale municipal wastewater treatment plants were evaluated over a period of 19 months in the suburb of Las Rozas in Madrid (Spain). Four plants used compact extended aeration, two used conventional activated sludge, two used conventional extended aeration, one used a rotary biodisc reactor and the other used a peat bed reactor. The best results were obtained from the plants that used conventional technologies and the biodisc. Conventional activated sludge and extended aeration had higher removal efficiencies for ammonia, TSS, COD and BOD(5) and produced good quality final effluents for final disposal in accordance with the discharge standard. Empirical equations that correlated the concentration of dissolved oxygen in the effluents with the efficiencies of TSS, ammonia, COD and BOD(5) removals for all plants evaluated were obtained. The performance of the plants using compact extended aeration was affected more than those using conventional technologies or rotary biodisc when the capacity exceeded that of its initial design.  相似文献   

7.
A bench-scale experimental study was carried out to investigate the overall performance of a combined anaerobic reactor for treating pre-settled municipal wastewater at ambient temperature (18–28°C) in terms of substrate removal efficiencies, biogas, methane production, volatile fatty acid (VFA) profiles and effluent suspended solids (SS) concentration, etc. The tested reactor was a modified anaerobic baffled reactor (ABR). The second and third compartments were partly packed with supporting media. The experimental results were similar to, or compared favourably with, other anaerobic reactor systems for municipal wastewater treatment at ambient temperature and proved the technical feasibility of this compartmentalised reactor. Considering its simple structure and operation, it could be considered a potential reactor system for treating municipal and domestic wastewaters in tropical and sub-tropical areas of developing countries.  相似文献   

8.
Wood processing effluents contain different types of phenolic compounds, from simple monomers to high molecular weight (MW) polyphenolic polymers, that can inhibit wastewater treatment. This work presents a comparative study of the methanogenic toxicity produced by three wood processing effluents (hardboard, fiberboard and BKME (kraft mill effluent)) using Pinus radiata, Eucalyptus and Tepa as feedstock (the last one being a native Chilean tree species). This study evaluates the influence of non-adapted granular and adapted flocculent sludge on forest industrial wastewater treatment as well as continuous anaerobic biodegradation of hardboard processing effluent using the upflow anaerobic sludge blanket (UASB). The adapted biomass (flocculent sludge) did not show any lag-phase signs. The 50% IC (the concentration causing 50% inhibition of methanogenic activity) was 4.3 g COD-effluent (chemical oxygen demand (COD)-of the effluent)/l and 2.8 g COD-effluent/l for the flocculent sludge and the granular sludge, respectively. The UASB system worked at low organic load rates (0.1-0.4 g COD/l d) with the COD removal ranging between 10 and 30%, and color removal did not occur under anaerobic conditions due to high MW. Indeed, the MW analysis indicates the presence of phenolic compounds over 25,000 Da in the anaerobic effluent.  相似文献   

9.
采用竖式SBR作为反应器,利用城市污水处理厂剩余污泥作为接种污泥,通过不间断运行培养出好氧颗粒污泥。实验结果表明,采用非限量曝气模式好氧颗粒污泥降解模拟污水的效果较好,其COD去除率可达98%以上。曝气量对好氧颗粒污泥的形成和稳定具有重要影响,当气速为26.5m/h时,好氧颗粒污泥的性状和处理有机废水效果最佳。同时好氧颗粒污泥对pH值的变化不明显,当pH为5—8范围内,其COD去除率都可达到85%以上。但是未经驯化的好氧颗粒污泥对对硝基苯酚和对氯苯酚两种芳香类有机物较敏感,而对硝基苯酚对其毒性更大。当对硝基苯酚和。对氯苯酚浓度为10mg/L时,其COD去除率仅为42.5%和52%。  相似文献   

10.
Biological treatment of landfill leachate usually results in low nutrient removals because of high chemical oxygen demand (COD), high ammonium-N content and the presence of toxic compounds such as heavy metals. Landfill leachate with high COD content was pre-treated by coagulation-flocculation with lime followed by air stripping of ammonia at pH=12. Nutrient removal from pre-treated leachate was carried out using a lab-scale sequencing batch reactor (SBR). Three different operations consisting of different numbers of steps were tested and their performances were compared. These operations were the three-step anaerobic (An)/anoxic (Ax)/oxic (Ox); the four-step (An/Ox/Ax/Ox), and the five-step (An/Ax/Ox/Ax/Ox) operations with total residence time of seven hours each. Experiments were carried out using three consecutive operations with a total cycle time of 21 h at a constant sludge age of 10 days. The lowest effluent nutrient levels were realized by using the five-step operation which resulted in effluent COD, NH4-N and PO4-P contents of 1,400, 107 and 65 mg l(-1), respectively, at the end of 21 h. Addition of domestic wastewater (1/1, v/v) and powdered activated carbon (PAC, 1 g l(-1)) to the pre-treated leachate improved nutrient removals in the five-step SBR operation, resulting in 75% COD, 44% NH4-N and 44% PO4-P removals after 21 hours of operation.  相似文献   

11.
Treatment and reuse of sewage sludge   总被引:2,自引:0,他引:2  
Sewage sludge was treated using composting, fixed-bed and stirred anaerobic digesters. The treatment performance in terms of the physico chemical parameters, bacterial indicators and pathogenic forms were assessed. In addition, the biogas production rate was recorded in the case of anaerobic digesters. Composting of the sewage sludge increased its total solids from 39 to 93% after 6 weeks, while the reduction in organic matter was 40% and the total nitrogen and phosphorus contents increased by 22 and 30%, respectively. Complete removal of salmonellae and faecal coliforms occurred, so that the composted sludge could be used as a soil conditioner and fertilizer. The results of the anaerobic treatment indicated that an organic load of 4.8kg COD m–3 per day achieved the best operating conditions for either the stirred or fixed-bed digester. The mean percentage removals of COD, BOD, faecal coliforms, faecal streptococci and the biogas production rate for the stirred digester were 53, 53, 24 and 29% and 259 L kg–1 COD per day, respectively. The corresponding mean percentage removals and production rate for the experiments with a fixed-bed digester were 61, 62, 33 and 35% and 328 L kg–1 COD per day, respectively. Improvements in the BOD and faecal coliform reductions and the gas production rate of 17, 38 and 21%, respectively, were achieved due to the presence of media (Berl saddles) in the fixed-bed digester. The microbial content of the anaerobically treated sludge is too high to be used as a fertilizer, while that of the composted sludge is low enough for such use.  相似文献   

12.
The main objective of this paper was to perform a preliminary comparative study between chemical and electrochemical coagulation processes, both followed by flocculation and sedimentation of an effluent from an upflow anaerobic sludge blanket (UASB) reactor treating simulated wastewater from an unbleached Kraft pulp mill. The electrochemical treatment removed up to 67% (with aluminum electrodes) and 82% (with stainless-steel electrodes) of the remaining chemical oxygen demand (COD) and 84% (stainless steel) and 98% (aluminum) of the color in the wastewater. These efficiencies were achieved with an energy consumption ranging from 14 to 20 Wh l(-1). The coagulation-flocculation treatment with ferric chloride and aluminum sulfate removed up to 87% and 90% of COD and 94% and 98% of color, respectively. The addition of a high molecular weight cationic polymer enhanced both COD and color removal efficiencies. The two post-treatment processes proved to be technically feasible; however the economical feasibility could not be assessed since the experiments were performed with small reactors that could distort scale factors.  相似文献   

13.
An assessment was made of cheese whey treatment in a mechanically stirred anaerobic sequencing batch reactor (ASBR) containing granular biomass. The effect of increasing organic load and decreasing influent alkalinity supplementation (as sodium bicarbonate) was analyzed. The reactor operated on 8-h cycles with influent COD concentrations of 500, 1000, 2000 and 4000 mg/L, corresponding to volumetric organic loads of 0.6 to 4.8 mgCOD/L.d. Organic COD removal efficiencies were always above 90% for filtered samples. These results were obtained with an optimized alkalinity supplementation of 50% (ratio between mass of NaHCO3 added and mass of influent mgNaHCO3/mgCOD) in the assays with 500 and 1000 mgCOD/L and of 25% in the assays with 2000 and 4000 mgCOD/L. Initial alkalinity supplementation was equal to the mass of influent COD (100%). The system showed formation of viscous polymer-like substances. These were probably of microbiological origin occurring mainly at influent CODs of 2000 and 4000 mg/L and caused some biomass flotation. This could, however be controlled to enable efficient and stable reactor operation.  相似文献   

14.
Anaerobic digestion of dairy manure with enhanced ammonia removal   总被引:5,自引:0,他引:5  
Poor ammonia-nitrogen removal in methanogenic anaerobic reactors digesting animal manure has been reported as an important disadvantage of anaerobic digestion (AD) in several studies. Development of anaerobic processes that are capable of producing reduced ammonia-nitrogen levels in their effluent is one of the areas where further research must be pursued if AD technology is to be made more effective and economically advantageous. One approach to removing ammonia from anaerobically digested effluents is the forced precipitation of magnesium ammonium phosphate hexahydrate (MgNH4PO4 x 6H2O), commonly called struvite. Struvite is a valuable plant nutrient source for nitrogen and phosphorus since it releases them slowly and has non-burning features because of its low solubility in water. This study investigated coupling AD and controlled struvite precipitation in the same reactor to minimize the nitrogen removal costs and possibly increase the performance of the AD by reducing the ammonia concentration which has an adverse effect on anaerobic bacteria. The results indicated that up to 19% extra COD and almost 11% extra NH3 removals were achieved relative to a control by adding 1750 mg/L of MgCl2 x 6H2O to the anaerobic reactor.  相似文献   

15.
A promising alternative to conventional single phase processing, the use of sequential anaerobic-aerobic digestion, was extensively investigated on municipal sewage sludge from a full scale wastewater treatment plant. The objective of the work was to evaluate sequential digestion performance by testing the characteristics of the digested sludge in terms of volatile solids (VS), Chemical Oxygen Demand (COD) and nitrogen reduction, biogas production, dewaterability and the content of proteins and polysaccharides. VS removal efficiencies of 32% in the anaerobic phase and 17% in the aerobic one were obtained, and similar COD removal efficiencies (29% anaerobic and 21% aerobic) were also observed. The aerobic stage was also efficient in nitrogen removal providing a decrease of the nitrogen content in the supernatant attributable to nitrification and simultaneous denitrification. Moreover, in the aerobic phase an additional marked removal of proteins and polysaccharides produced in the anaerobic phase was achieved. The sludge dewaterability was evaluated by determining the Optimal Polymer Dose (OPD) and the Capillary Suction Time (CST) and a significant positive effect due to the aerobic stage was observed. Biogas production was close to the upper limit of the range of values reported in the literature in spite of the low anaerobic sludge retention time of 15 days. From a preliminary analysis it was found that the energy demand of the aerobic phase was significantly lower than the recovered energy in the anaerobic phase and the associated additional cost was negligible in comparison to the saving derived from the reduced amount of sludge to be disposed.  相似文献   

16.
A mathematical model for a hybrid anaerobic reactor (HAR), which uses self-immobilized anaerobic bacterial granules under completely fluidized condition, has been developed. Stoichiometry of glucose fermentation into methane has been considered in this model. The model includes: (1) a biofilm model which describes substrate conversion kinetics within a single granule; (2) a bed fluidization model which describes the distribution of biogranules within the fluidized bed and (3) a reactor model which links the above two to predict the substrate and products concentration profile along the reactor height. Product and pH inhibition for each group of bacteria has been considered in the kinetic model. The spatial distribution of each group of anaerobic bacteria within granules has been found to play a vital role in bringing about the conversion. Experiments were conducted in the reactor using a synthetic effluent containing glucose as the carbon source to study the treatment efficiency. The model was simulated first assuming a 3-layered distribution [MacLeod, F.A., Guiot, S.R., Costerton, J.W., 1990. Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Applied and Environmental Microbiology 56, 1598-1607.] of anaerobic bacteria within granules and then homogeneous distribution [Grotenhuis, J.T.C., Smit, M., Plugge, C.M., Yuansheng, X., van Lammeren, A.A.M., Stams, A.J.M., Zehnder, A.J.B., 1991. Bacterial composition and structure of granular sludge adapted to different substrates. Applied and Environmental Microbiology 57, 1942-1949.] of anaerobic bacteria. The predictions of model simulation with the assumption of layered structure closely represented the experimental data.  相似文献   

17.
Due to the toxic effects of trichlorophenol (TCP) on microorganisms, biological treatment efficiencies of TCP containing wastewaters are usually low. Synthetic wastewater containing 2,4,6-TCP was biologically treated in a hybrid-loop bioreactor system consisting of a packed column biofilm and an aerated tank bioreactor with effluent recycle in order to improve COD and TCP removals. Effects of the feed TCP concentration on COD, TCP and toxicity removal performance of the system were investigated for the feed TCP between 50 and 450 mg L(-1) while the sludge age (solids retention time, SRT) and hydraulic residence time (HRT) were kept constant at 20 d and 25 h, respectively. Biomass concentrations in the packed column and in the aeration tank decreased with increasing feed TCP concentrations due to toxic effects of TCP on the organisms. Low biomass concentrations in the system at high feed TCP contents resulted in low COD, TCP and toxicity removals. Therefore, percent TCP, COD and toxicity removals decreased with increasing feed TCP concentrations especially above 400 mg L(-1). The effluent TCP concentrations were lower than 20 mg L(-1) for the feed TCP concentrations below 390 mg L(-1) resulting in TCP and COD removals above 90%. Specific rates of TCP and COD removals increased with the feed TCP due to low biomass concentrations at high TCP contents. The system should be operated at a feed TCP lower than 400 mg L(-1) in order to obtain more than 90% TCP, COD and toxicity removals under the specified experimental conditions.  相似文献   

18.
Treatment of low-strength soluble wastewater (COD approximately 500 mg/L) was studied using an eight chambered anaerobic baffled reactor (ABR). At pseudo steady-state (PSS), the average total and soluble COD values (COD(T) and COD(S)) at 8h hydraulic retention time (HRT) were found to be around 50 and 40 mg/L, respectively, while at 10h HRT average COD(T) and COD(S) values were of the order of 47 and 37 mg/L, respectively. COD and BOD (3 day, 27 degrees C) removal averaged more than 90%. Effluent conformed to Indian standards laid down for BOD (less than 30 mg/L). Reactor effluent characteristics exhibited very low values of standard deviation indicating excellent reactor stability at PSS in terms of effluent characteristics. Based on mass balance calculations, more than 60% of raw wastewater COD was estimated to be recovered as CH(4) in the gas phase. Compartment-wise profiles indicated that most of the BOD and COD got reduced in the initial compartments only. Sudden drop in pH (7.8-6.7) and formation of volatile fatty acids (VFA) (53-85 mg/L) were observed in the first compartment due to acidogenesis and acetogenesis. The pH increased and VFA concentration decreased longitudinally down the reactor. Residence time distribution (RTD) studies revealed that the flow pattern in the ABR was neither completely plug-flow nor perfectly mixed. Observations from scanning electron micrographs (SEM) suggest that distinct phase separation takes place in an ABR.  相似文献   

19.
HSMBR系统表现了对于COD高且稳定的去除效果。对于TN、TP,由于不排泥,污泥浓度的升高,并且填料内部的生物膜不断形成,以及在填料内部的污泥受曝气的扰动小,而变的较为密实,反应器内形成好氧、缺氧两种微环境并存,有利于系统对于TN、TP去除率的提高。  相似文献   

20.
Seaweed can be anaerobically digested for the production of energy-rich methane. However, the use of seaweed digestate as a fertilizer may be restricted because of the high heavy metal content especially cadmium. Reducing the concentration of heavy metals in the digestate will enable its use as a fertilizer. In this laboratory-scale study, the potential of seaweed and its leachate in the production of methane were evaluated in batch tests. The effect of removing the heavy metals from seaweed leachate was evaluated in both batch test and treatment in an upflow anaerobic sludge blanket (UASB) reactor. The heavy metals were removed from seaweed leachate using an imminodiacetic acid (IDA) polyacrylamide cryogel carrier. The methane yield obtained in the anaerobic digestion of seaweed was 0.12 N l CH4/g VSadded. The same methane yield was obtained when the seaweed leachate was used for methane production. The IDA-cryogel carrier was efficient in removing Cd2+, Cu2+, Ni2+ and Zn2+ ions from seaweed leachate. The removal of heavy metals in the seaweed leachate led to a decrease in the methane yield. The maximum sustainable organic loading rate (OLR) attained in the UASB reactor was 20.6 g tCOD/l/day corresponding to a hydraulic retention time (HRT) of 12 h and with a total COD removal efficiency of about 81%. Hydrolysis and treatment with IDA cryogel reduced the heavy metals content in the seaweed leachate before methane production. This study also demonstrated the suitability of the treatment of seaweed leachate in a UASB reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号