首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Various elements and inorganic ions in rice straw and ash samples were analyzed by using inductively coupled plasma atomic emission spectrometry (ICP‐AES) and ion chromatography (IC). Five major elements: Mg, Mn, Al, Ca, and Fe and eight minor and trace elements: Cr, Cu, Ti, Zn, La, Sr, Ba, and Hg were detected in these samples, at more than ppm‐level. In ash samples the trace elements such as Y, As, V, Se, and Sc were also identified. The concentrations of SO4, PO4, Cl, Na, and K ions in these samples were higher than those of other ions measured. These elements and inorganic ion concentrations were approximately one order of magnitude higher in the ash than in the straw samples. Gas chromatography/mass spectrometry (GC/MS) and library search showed the presence of fatty‐, carboxylic‐ and nicotinic acids, and their derivatives in small quantities in the straw samples.  相似文献   

2.
Cu, Cr, Mn, Ni and Zn contents were quantified for three wild-growing edible species of macrofungi (Boletus edulis, Macrolepiota procera and Cantharellus cibarius) and underlying soil samples collected at forest sites in Lubuskie voivodeship, Poland. The total concentration of the analysed elements was determined using an ASA iCE 3000 series atomic absorption spectrometer. The analysis found significant differences in bioaccumulation between species and differing distributions of trace elements in the caps and stalks of fruiting bodies. Bioaccumulation factors revealed that Zn and Cu are the most bioaccumulated elements, whereas Cr and Mn are excluded from bioaccumulation. Macrolepiota procera showed the highest bioaccumulation of Cu, and Zn is accumulated to the greatest extent by Boletus edulis. A few significant differences (p≤0.05) between the examined species were observed.  相似文献   

3.
矿冶区周边水稻对不同来源重金属污染的指示作用   总被引:4,自引:1,他引:4  
有色金属开采与冶炼可对周边环境造成严重的重金属污染,查明重金属污染来源对于矿冶周边重金属污染管理与控制具有重要意义.为探索利用矿冶周边水稻对As、Cd、Pb、Zn和Cu的富集与水稻体内元素的含量平衡特征指示重金属污染来源的可行性,选择了我国著名的水口山Pb-Zn矿山开采与冶炼周边区,根据重金属污染排放和迁移扩散特征,结合当地气象和地貌条件,确定了3个典型采样区,其中两个采样区分别邻近冶炼厂和尾砂库,另一处为位于两者之间的过渡区.采用蛇形采样法在稻田内采集33个成熟水稻及土壤样品,分析水稻不同部位(包括根、茎叶、籽粒)及土壤中As、Cd、Pb、Zn、Cu5种重金属和其他16种元素的含量.结果表明,3个采样区之间土壤中的As、Cd、Pb、Zn和Cu含量均存在显著性差异;各采样区水稻中除根际和籽粒中Cd含量外,各部位重金属含量也均有显著差异.靠近冶炼厂的水稻茎叶中As、Pb含量高于离冶炼厂较远的采样区水稻茎叶.尽管As、Pb在靠近尾砂库采样区土壤中含量最高,但在该区水稻茎叶中的含量却最低;在除As、Cd、Pb、Zn、Cu5种重金属以外的其他16种元素中,水稻根部仅有5种元素含量在各采样区之间存在差异,指示相同的土地利用类型及土壤母质条件;而在茎叶和籽粒中则分别有多达11和10种元素含量出现采样区差异,指示重金属污染来源影响水稻茎叶及籽粒中元素的含量平衡.多元统计分析结果显示,3个采样区水稻茎叶中元素含量平衡存在显著的分异,显示出明显的采样区属性.结合采样区域空间位置、污染物来源、水稻对重金属的富集与转运特征分析,3个采样区重金属主要污染特征可分别确定为水-气混合来源型、大气来源型和尾砂来源型.论文结果证明利用水稻茎叶指示矿冶周边重金属污染来源是可行的.  相似文献   

4.
This paper describes a study of the trace element distribution in sediments, marine water and mussel Mytilus galloprovincialis of the Venetian Lagoon around the Island of Murano, an island with a long tradition of glassmaking. Trace elements analysed include Fe, Mn, Zn, Cu, Cr, Pb, Ni, Ag and As. Sediments are contaminated with Zn, Cu, Ag, As and Pb, with levels in the <2m fraction that are likely to cause adverse biological effects to marine organisms. The pelite (<63m) is the main carrier of heavy metals at most sites. However, the fine-grained and coarse sand on the southern coast of Murano accounts for a significant proportion of Fe, Mn, Zn, Cr, Ag, Ni and Pb. Most trace element concentrations found in soft tissue of mussels appear to be within recommended Italian and international guidelines for shellfish for human consumption, the only exception being relatively high As levels. The bioaccumulation of Ag and Cr is more pronounced in the shell of these organisms. In the marine water of the lagoon, trace elements are more enriched than in other areas of the Mediterranean, with particular reference to the dissolved labile species of Zn, Mn, As, Cu, Ni and Cr.  相似文献   

5.
In Asembagus (East Java, Indonesia), surface water is contaminated with effluent from the hyperacid Ijen Crater Lake. In a previous study, we reported that food crops irrigated with this water had increased concentrations of various elements. Here, we present a total diet study for adults and 6-year-old children to determine if the mean daily intake of a broad range of elements is safe and adequate. For children, the intake of B, Mg, Mn and V is high with Hazard Quotients (HQ) of 1.1 (B), 1.4 (Mn) and 1.4 (V), respectively (no TDI is available for Mg). For Mn, the daily intake is high due to the consumption of locally produced rice. Drinking water is the main source of B, Mg and V. For adults, the intake of Mg, Mn and V is also high but HQ values are ≤0.7. For both children and adults, the intake of Ca, Zn and particularly Fe is below the RNI (Fe intake is 90% below the RNI for women). It is concluded the mean intake of elements is unbalanced and Fe deficiency is probably the most serious health problem. Toxic effects cannot be fully excluded since deficiency of essential elements such as Ca, Fe and Zn can increase the absorption and retention of various elements.  相似文献   

6.
The mineral elements present in brown rice play an important physiological role in global human health. We investigated genotypic variation of eight of these elements (P, K, Ca, Mg, Fe, Zn, Cu, and Mn) in 11 different grades of brown rice on the basis of the number and distance coefficients of 282 alleles for 20 simple sequence repeat (SSR) markers. Six-hundred and twenty-eight landraces from the same field in Yunnan Province, one of the largest centers of genetic diversity of rice (Oryza sativa L.) in the world, formed our core collection. The mean concentrations (mg kg−1) of the eight elements in brown rice for these landraces were P (3,480) > K (2,540) > Mg (1,480) > Ca (157) > Zn (32.8) > Fe (32.0) > Cu (13.6) > Mn (13.2). Mean P concentrations in brown rice were 6.56 times total soil P, so the grains are important in tissue storage of P, but total soil K is 7.82 times mean K concentrations in brown rice. The concentrations of the eight elements in some grades of brown rice, on the basis of the number and distance coefficients of alleles for 20 SSR markers for the landraces, were significantly different (P < 0.05), and further understanding of the relationship between mineral elements and gene diversity is needed. There was large variation in element concentrations in brown rice, ranging from 2,160 to 5,500 mg P kg−1, from 1,130 to 3,830 mg K kg−1, from 61.8 to 488 mg Ca kg−1, from 864 to 2,020 mg Mg kg−1, from 0.40 to 147 mg Fe kg−1, from 15.1 to 124 mg Zn kg−1, from 0.10 to 59.1 mg Cu kg−1, and from 6.7 to 26.6 mg Mn kg−1. Therefore, germplasm evaluations for Ca, Fe, and Zn concentrations in rice grains have detected up to sevenfold genotypic differences, suggesting that selection for high levels of Ca, Fe, and Zn in breeding for mass production is a feasible approach. Increasing the concentrations of Ca, Fe, and Zn in rice grains will help alleviate chronic Ca, Zn, and Fe deficiencies in many areas of the world.  相似文献   

7.
Heavy metal contamination of soils is widespread and induces a long-term risk to ecosystem health. This research focuses on the heavy metal contamination, transfer values and risk assessment in the Ko?ani Field plant system (Republic of Macedonia). To identify the heavy metal concentrations in Ko?ani crops (rice and maize), the geochemical analysis was performed by inductive coupled plasma mass spectrometer and thereupon the transfer factor (TF) and estimated daily intake amount values were calculated. The highest As, Cd, Mo, Pb and Zn values were determined in the rice samples grown in the paddy fields near the Zletovska River. The highest Pb and Mo concentrations measured in the maize samples were from the maize fields near the Zletovska River and Ciflik city. High TF values for Mo, Zn, Cd and Cu revealed a strong accumulation of Mo, Zn and Cd by rice and Mo and Zn by maize crops. The results of the estimated daily intake showed that the regular consumption of rice and maize crops containing the highest Cd, Mo, Pb and Zn concentrations could pose a serious threat to human health, because the daily intake of Cd, Mo, Pb and Zn for crops grown in the fields around the Zletovska River exceeded the recommended provisional tolerable daily intake values. Taking into account the results, the area around Zletovska River is considered as the most anthropogenically impacted part of Ko?ani Field.  相似文献   

8.
In this study, we investigated the concentrations of ten trace elements (Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg, and As) and their trophodynamics in a benthic food chain of Deer Island, Northern Yellow Sea. The concentrations of Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg, and As in the food chain ranged from 3.2 to 23.2, from 71 to 227, from 7.4 to 45.6, from 0.44 to 5.80, from 0.73 to 7.60, from 0.14 to 1.65, from 0.68 to 6.70, from 0.08 to 1.86, from 0.08 to 1.18, and from 0.24 to 3.92 mg kg?1 dry weight, respectively. Among these trace elements, the linear regression between the log-transformed concentrations of Hg and Cd and δ15N values showed statistically significant increase (p<0.05) with the slopes of 0.134 and 0.144, indicating biomagnification of Hg and Cd occurred in the benthic food chain of Deer Island. While the linear regression for other eight trace elements (Cu, Zn, Mn, Se, Ni, Cr, Pb and As) were characterised by extensive scatter with non-significant correlation coefficients (R 2=0.002–0.235) and slopes (p=0.079–0.875), indicating there were not biomagnified or biodiluted of these trace elements.  相似文献   

9.
There have been significant efforts to establish a widely usable method for the prediction of trace element bioavailability in soil. In this work, we used extraction with 0.01 M CaCl2 and 0.05 M ethylenediaminetetraacetic acid (EDTA) to estimate bioavailable concentrations of As, Cd, Cu, Pb, and Zn in a soil moderately contaminated with trace elements 1 and 2 years after the application of three amendments. The experiment took place in a field plot of a soil affected by the toxic spill of the Aznalcóllar mine. Four treatments were established: three with amendments (biosolid compost, sugar beet lime, and a combination of leonardite plus sugar beet lime) and a control without amendment. Trace element concentrations of two representative species in each year (Lamarckia aurea and Poa annua in 2004 and Lamarckia aurea and Bromus rubens in 2005) were analyzed. The results showed a positive effect of the amendments both on soil and vegetation. Trace element concentrations in plants growing in the amended subplots were lower than those in plants from nonamended subplots. As a rule, concentrations of CaCl2-soluble Cd, Cu, and Zn in soil were positively correlated with trace elements in plants, whereas EDTA extraction was scarcely correlated with plant concentration. For species of grasses, especially L. aurea, CaCl2 seems to be a more suitable extractant to predict trace element bioavailability in this contaminated soil.  相似文献   

10.
Principal component analysis of trace elements in industrial soils   总被引:4,自引:0,他引:4  
The concentrations of the elements Cr, Pb, Cd, Zn, Ni, Mn, Cu and As in soil samples from industrial areas in Serbia were studied. The complexity of the data of eight elements in fifty-nine soil samples was reduced by principal component analysis. Three significant factors, in which 78% of the total variance in the data was found, were attributed to possible pollution sources. The crude and fuel oil burning, local smelters and exhaust emissions were shown to impact heavily the soil trace element profile, whereas no distinct soil type factor was observed. This approach, evidencing spatial relationship, enabled a differentiation between the soil samples originating from different areas.Selected article from the Regional Symposium on Chemistry and Environment, Krusevac, Serbia, June 2003, organised by Dr. Branimir Jovancicevic  相似文献   

11.
Thirty diet samples from three different social groups were collected both in summer and in winter seasons using duplicate portion technique with three collection days. Toxic element concentrations, including Pb, Cd, as well as some essential elements were determined by atomic absorption spectrometry (AAS). The average dietary intakes of Taiwanese were estimated as follows (means ± S.D., n = 30): Mg, 175 ± 77 mg/day; Zn, 9.5 ± 11.4 mg/day; Mn, 2.8 ± 1.3 mg/day; Cu, 1.6±1.7mg/day; Ni, 0.13 ± 0.14 mg/day; Cd, 58 ± 62 μg/day, and Pb, 31 ±26 μg/day. The obtained elemental concentrations were scattered due to different dietary habits and cooking methods. In addition, a strong correlation arose between the trace element concentrations in agricultural products and in the diet of regional areas of Taiwan. Analysis results indicated that average intakes are consistently below current US Recommended Daily Allowances (RDAs) for Mg and Zn, within the recommended safe and adequate RDA for Mn, and below the FAO/WHO Provisional Tolerable Daily Intakes (PTDIs) for Pb. The average daily intakes of Cd by regional area of Taiwan markedly exceeded those of other countries and the PTI value during the summer.  相似文献   

12.

Selected toxic elements (total As, Cd, Cr, Hg, Pb, Sr, U and V) and essential elements (Co, Cu, Fe, Mn and Zn) were analyzed using an inductively coupled plasma mass spectrometry (ICP-MS) in unpolished and milled rice collected from Kazakhstan and milled rice from Spain and Portugal to evaluate the potential health risk to the population. Arsenic species (arsenite, arsenate, arsenobetaine, dimethylarsinate and monomethilarsonate) were analyzed using HPLC-IC-MS. From 146 samples analyzed, none of them exceeded the maximum limit set by the European Legislation for Cd or Pb or values recommended by the Codex Alimentarius. Concentrations of Sr, U and V were below LOD and those of Hg, Pb, Co and Cr between <LOD and 0.54 mg/kg (highest concentration of Cr) in milled rice. Portuguese rice samples contained the highest mean concentration of As, Hg, Pb, Co, Cr, Cu, Mn and Zn. The highest mean of arsenobetaine (0.001 mg/kg), dimethylarsinate (0.27 mg/kg) and monomethilarsonate (0.02 mg/kg) was found in Spanish rice and that of arsenite (0.30 mg/kg) in Kazakh rice. Inorganic As in samples from Kazakhstan was above the ML (0.2 mg/kg) proposed by FAO/WHO, but in seven samples from Spain and in four from Portugal were above the limit. The estimated weekly intake of total or inorganic As(III, V), Cd, Hg and Pb for rice consumption by Kazakh, Spanish and Portuguese adults and children was lower than the provisional tolerable weekly intake established by Joint FAO/WHO Expert Committee on Food Additives and the European Food Safety Authority.

  相似文献   

13.
Concentrations of a wide range of trace elements: arsenic, cadmium, cobalt, chromium, hafnium, nickel, thorium, uranium, zinc and the rare earth elements, cerium, europium, samarium, terbium and ytterbium were determined by instrumental neutron activation analysis in the brown alga,Fucus vesiculosus from Eckwarder Hörne, North Sea and from Rügen, Baltic Sea. Another brown alga,Sargassum filipendula from Sri Lanka, Indian ocean (representing an unpolluted control station) was similarly investigated. Cobalt, chromium and nickel concentrations were highest inF. vesiculosus from the North Sea while zinc was highest in samples from the Baltic Sea, reflecting high levels of these elements in coastal waters of the North and the Baltic sea. Cadmium, cobalt, nickel and zinc levels were lowest inS. filipendula from Sri Lanka, probably demonstrating lower levels of those elements in coastal waters. Concentration levels of hafnium, thorium, uranium, and the rare earth elements were highest inS. filipendula. Two years later in 1994,S. filipendula along withUlva sp. (green alga) was resampled from the same sampling site, and in addition to the above elements, six other trace elements (Ag, Ba, Br, Rb, Se and Sr) were determined.Sargassium filipendula showed a particular affinity for Ag, As, Br and Sr. For the other elements, marginal concentration differences were observed betweenS. filipendula andUlva sp., probably reflecting the regional background levels. Substantially higher concentrations of Hf, Th, U, and the rare earths were found again in the 1994Sargassum andUlva samples, reflecting the effect of a substrate rich in rare earth elements. The brown algae used in this study may be used to monitor trace elements in coastal waters.  相似文献   

14.
We applied the solution-based inductively coupled plasma mass spectrometry to quantify trace elements in statoliths of Humboldt squid, Dosidicus gigas, collected from the high seas off Chile, Peru, and Costa Rica by Chinese squid jigging vessels during 2007–2009. All squid samples were aged and their spawning dates were back-calculated based on daily increments in statoliths. The most abundant trace elements in the whole statolith were Ca and Sr followed by other elements in the order of Fe, Mg, Zn, Ba, Cu, Mn, Ni, Al, Cr, Co, and U. Significant differences in Mn and Sr were found among samples from the three regions. Sr, Ni, Mn, and Co contributed significantly to the discrimination among the regions, with Co responsible for explaining most of the variation, followed by Ni, Mn, and Sr. Squid from the high seas off Costa Rica could be separated from those off Peru and Chile mostly due to the differences in Ni, Sr, and Co, while samples off Peru and Chile could be distinguished mainly because of differences in Mn and Co. Discriminant function analysis suggested that the overall cross-validated classification rate was 85.6 % with samples off Chile having the highest correct identification rates and samples off Costa Rica having the highest false classification rates. Significant positive relationships were found between sea surface temperature (SST) and Cr/Ca, Mn/Ca, and U/Ca, and there was a negative relationship between SST and Cu/Ca, Sr/Ca. This study suggests that the spatial difference in trace elements of statolith can be used to separate geographic populations of D. gigas and that elements having significant relationships with SST can be considered as natural indicators of ambient temperature.  相似文献   

15.
Concentrations of eight trace metals (TMs) in road dust (RD) (particles?<?25 μm) from urban areas of Xinxiang, China, were determined by inductively coupled plasma mass spectrometry. The geometric mean concentrations of Zn, Mn, Pb, As, Cu, Cr, Ni and Cd were 489, 350, 114, 101, 60.0, 39.7, 31.6, and 5.1 mg kg?1, respectively. When compared with TM levels in background soil, the samples generally display elevated TM concentrations, except for Cr and Mn, and for Cd the enrichment value was 69.6. Spatial variations indicated TMs in RD from park path would have similar sources with main roads, collector streets and bypasses. Average daily exposure doses of the studied TMs were about three orders of magnitude higher for hand-to-mouth ingestion than dermal contact, and the exposure doses for children were 9.33 times higher than that for adults. The decreasing trend of calculated hazard indexes (HI) for the eight elements was As?>?Pb?>?Cr?>?Mn?>?Cd?>?Zn?>?Ni?>?Cu for both children and adults.  相似文献   

16.
Prolonged consumption of rice containing elevated cadmium (Cd) levels is a significant health issue particularly in subsistence communities that are dependent on rice produced on-farm. This situation is further exacerbated in areas of known non-ferrous mineralization adjacent to rice-based agricultural systems where the opportunity for contamination of rice and its eventual entry into the food chain is high. In the current study, an assessment of the degree of soil Cd and Zn contamination and associated rice grain Cd contamination downstream of an actively mined zone of Zn mineralization in western Thailand was undertaken. Total soil Cd and Zn concentrations in the rice-based agricultural system investigated ranged from 0.5 to 284 mg kg−1 and 100 to 8036 mg kg−1, respectively. Further, the results indicate that the contamination is associated with suspended sediment transported to fields via the irrigation supply. Consequently, the spatial distribution of Cd and Zn is directly related to a field’s proximity to primary outlets from in-field irrigation channels and inter-field irrigation flows with 60–100% of the Cd and Zn loading associated with the first three fields in irrigation sequence. Rice grain Cd concentrations in the 524 fields sampled, ranged from 0.05 to 7.7 mg kg−1. Over 90% of the rice grain samples collected contained Cd at concentrations exceeding the Codex Committee on Food Additives and Contaminants (CCFAC) draft Maximum Permissible Level for rice grain of 0.2 mg Cd kg−1. In addition, as a function of demographic group, estimated Weekly Intake (WI) values ranged from 20 to 82 μg Cd per kg Body. This poses a significant public health risk to local communities. The results of this study suggest that an irrigation sequence-based field classification technique in combination with strategic soil and rice grain sampling and the estimation of WI values via rice intake alone may be a useful decision support tool to rapidly evaluate potential public health risks in irrigated rice-based agricultural systems receiving Cd contaminated irrigation water. In addition, the proposed technique will facilitate the cost effective strategic targeting of detailed epidemiological studies thus focusing resources to specific ‘high risk’ areas.  相似文献   

17.
In Asembagus (East Java, Indonesia) irrigation water is contaminated with effluent from the hyperacid Ijen Crater Lake resulting in a low pH and high levels of various elements. As a first step towards a risk assessment, locally produced food items (rice, maize, cassava leaf, cassava root, peanuts) were collected and concentrations of As, B, Ca, Cd, Co, Cu, Fe, Mg, Mn, Mo, Ni, Pb, V, Zn were compared to samples from a reference area and with literature values. Further, concentrations in rice were compared to total soil concentrations in paddy fields. Compared to the reference area, food items produced in the contaminated area had increased levels of Cd, Co, Ni and Mn in particular, while levels of Mo were lower. In contrast, total soil concentrations of Cd and Mn in particular have decreased whereas especially Mo was increased. In combination with the observed soil acidification, it is likely that the bioavailable concentration of most elements in the contaminated soil is higher (except for Mo) due to an increased weathering rate and/or input via the contaminated irrigation water. In terms of human health, concentrations in foods were generally within normal literature values. However, it was observed that essential elements (in particular Fe) known for their inhibitory effects on e.g. Cd and Mn toxicity did not accumulate in crops whereas Cd and Mn did.  相似文献   

18.
Widespread potential dietary deficiencies of calcium (Ca), iron (Fe), iodine (I), selenium (Se) and zinc (Zn) have been identified in Malawi. Several deficiencies are likely to be compounded by high phytic acid (PA) consumption. Rice (Oryza sativa) is commonly consumed in some Malawian populations, and its mineral micronutrient content is important for food security. The considerable irrigation requirements and flooded conditions of paddy soils can also introduce or mobilise potentially toxic elements including arsenic (As), cadmium (Cd) and lead (Pb). The aim of this study was to determine the mineral composition of rice sampled from farmers’ fields and markets in Malawi. Rice was sampled from 18 extension planning areas across Malawi with 21 white (i.e. polished) and 33 brown samples collected. Elemental composition was determined by inductively coupled plasma-mass spectrometry (ICP-MS). Arsenic speciation was performed using high-performance liquid chromatography (HPLC)-ICP-MS. Concentration of PA was determined using a PA-total phosphorus assay. Median total concentrations (mg kg?1, dry weight) of elements important for human nutrition in brown and white rice, respectively, were: Ca = 66.5 and 37.8; Cu = 3.65 and 2.49; Fe = 22.1 and 7.2; I = 0.006 and <0.005; Mg = 1130 and 265; Mn = 18.2 and 9.6; Se = 0.025 and 0.028; and Zn = 17.0 and 14.4. In brown and white rice samples, respectively, median PA concentrations were 5438 and 1906 mg kg?1, and median PA:Zn molar ratios were 29 and 13. Concentrations of potentially toxic elements (mg kg?1, dry weight) in brown and white rice samples, respectively, were: As = 0.030 and 0.006; Cd  ≤ 0.002 and 0.006; Pb = 0.008 and 0.008. Approximately 95 % of As was found to be inorganic As, where this could be quantified. Malawian rice, like the more widely consumed staple grain maize, contains inadequate Ca, I, Se or Zn to meet dietary requirements. Biofortification strategies could significantly increase Se and Zn concentrations and require further investigation. Concentrations of Fe in rice grain varied greatly, and this was likely due to contamination of rice samples with soil. Risk of As, Cd or Pb toxicity due to rice consumption in Malawi appears to be minimal.  相似文献   

19.
A characterization study of 7 hazardous (Hg, Pb, Cd, As, Cr, U, and Ni) and 11 essential (Co, Mo, Se, Cu, Zn, V, Ca, Al, Sr, Mn, and Fe) trace elements in date mussels (Lithophaga lithophaga,Linnaeus, 1758) was carried out by inductively coupled plasma mass spectrometer. Date mussels (231 individuals), caught in the Gulf of Manfredonia (Southern Italy), were divided into 4 size-related groups. The different tissues (muscle, stomach, hepatopancreas and rest of soft tissues) were separated and analyzed to study the capability of absorption of this species. No particular differences were reported on the basis of the shell size; the soft tissues play an important role on the accumulation levels of hazardous and essential trace elements. These marine animals may be considered a good bioindicator of marine environmental pollution for their longevity and habitat permanence peculiarities.  相似文献   

20.
Concentrations of Ca, Mg, K, Na, Cu, Zn, Al, Fe and Mn were measured in soils and in Tamarix nilotica from Wadi Allaqi on the shore of Lake Nasser in the Eastern Desert of Egypt. All of the elements were concentrated in the leaves of Tamarix relative to the stems and roots. Leaf:soil concentration ratios, used as an indicator of metal accumulation in the plant, showed high enrichment factors for Na (67.5), K (63.0) and Mg (35.0); of the trace elements measured, Zn had the highest enrichment factor (7.64). Comparison with other desert species suggested that Tamarix was exceptional only in the accumulation of sodium. Periodic inundation of the soil by Lake Nasser caused dilution and dispersion of the accumulated salts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号