首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
贵阳市秋、冬季大气PM_(2.5)中重金属元素的污染特征   总被引:4,自引:0,他引:4  
正贵阳市是我国西部地区的重要省会城市,地处山间盆地,多微风、静风的气候条件,对大气污染物浓度的变化比较敏感.本研究按功能区选取贵阳市10个代表性点位,以PM2.5中重金属为研究对象,分秋、冬两个季节采样,深入讨论了大气PM2.5中重金属的浓度水平、污染特征以及可能的污染来源,以期为贵阳市大气PM2.5中重金属污染防治提供科学依据.1实验材料与方法设置10个采样点,分别为云岩师大(文教区、交通干线)、云岩区检察院(行政区、交通干线)、合群路(商业综合区)、  相似文献   

2.
厦门市大气PM2.5中多环芳烃的昼夜变化特征   总被引:5,自引:0,他引:5  
对厦门市冬季不同功能区大气PM2.5中多环芳烃(PAHs)的昼夜变化特征进行分析.结果表明,在检出的13种PAHs中,总浓度及其组分均呈现明显的差异.PAHs总浓度(ΣPAHs)分布在3.04-12.49ng·m-3;各功能区PAHs以菲、芘和含量相对较高,其中菲占优势,说明厦门市冬季大气PM2.5中PAHs以菲的污染为主.局部地区晚间ΣPAHs的浓度明显高于日间浓度,这可能与夜间大气混合层下降、污染物不易扩散传输、日间PAHs易光降解等有关.  相似文献   

3.
北京大气颗粒物中多环芳烃浓度季节变化及来源分析   总被引:13,自引:1,他引:12  
使用大流量滤膜采样器,从2006年9月至2007年8月,每周同时采集北京城市大气可吸入颗粒物(PM10)和细粒子样品(PM2.5)各一次,二氯甲烷超声抽提一气相色谱/质谱分析了17种多环芳烃(PAHs)浓度,结果表明,春、夏、秋、冬四季北京大气PM10和PM2.5中PAHs总量分别为63.8±44.6ng·m-3、43.2±4.5ng·m-3、84.7±108.3ng·m-3、348.0±250.0ng·m-3和54.7±17.3ng·m-3、40.3±8.6ng·m-3、66.1±81.5ng·m-3、337.7±267.2ng·m-3;约有70%的PAHs存在于细粒子PM2.5中,其质量浓度有明显季节变化,冬季>秋季>春季>夏季;颗粒物中PAHs主要以4、5、6环存在,其中4环以上占79.4%.源解析表明,北京大气颗粒物中的PAHs主要来自燃煤,同时汽油、柴油燃烧排放也不能忽略.结合气象要素分析,温度升高和太阳辐射增强易造成多环芳烃挥发和反应,湿沉降有利于多环芳烃随颗粒物清除.  相似文献   

4.
PM10是衡量大气环境质量好坏的重要指标之一;多环芳烃(PAHs)是具有强烈致癌性的有机污染物,大多吸附在粒径小于10 μm颗粒物上.利用长期定位实验采集了南京市两典型功能区--大厂地区和山西路的PM10样品,对其PAHs质量浓度进行了分析测定,研究了不同功能区PM10中PAHs的时空污染特性.研究结果表明:南京市PM10污染比较严重,其质量浓度变化范围在0.1157 mg·m-3~0.3913 mg·m-3之间;经分析PM10中16种优控多环芳烃(PAHs)发现,全年大厂地区的PAHs的质量浓度与山西路PAHs的质量浓度没有明显的高低之分;PAHs总质量浓度的空间变化不明显,时间变化也没有规律性;比较PM10与PAHs的月平均质量浓度变化趋势,两者之间的变化没有相关性,各自的质量浓度变化也没有规律性,分析其结果可能是由于PAHs的不稳定性造成的.  相似文献   

5.
杭州市大气PM_(2.5)中碳分布特征及来源分析   总被引:1,自引:0,他引:1  
碳是城市空气中颗粒物的主要成分之一.PM2.5中的碳主要以有机碳(OC)和元素碳(EC)的形式存在.本文对杭州市大气中PM2.5颗粒物进行研究,探讨有机碳和元素碳的分布特征.  相似文献   

6.
采集了北京西三环地区的PM2.5样品,利用超声提取(UE)-固相萃取法(SPE)分离富集得到PM2.5中的多环芳烃(PAHs),对不同的固定相及洗脱液比例进行PAHs回收率比较,得到最优预处理条件.建立了基于HPLC-UV的PM2.5中PAHs分析方法,定量检出17种典型PAHs.对2014年4月12日至2014年5月1日期间PM2.5中PAHs污染特征进行分析,结果显示,PAHs总浓度(∑PAHs)范围为2.6—145.7 ng·m-3,平均浓度为32.2 ng·m-3,不同环数PAHs所占比例顺序为5环2环3环6环4环,呈富5环的特征.PM2.5质量浓度与∑PAHs及苯并[a]芘(Ba P)均呈现出良好的正相关性,R2分别为0.8和0.6.  相似文献   

7.
北京市冬季大气气溶胶中PAHs的污染特征   总被引:2,自引:0,他引:2  
利用大流量颗粒物采样器采集了2005-2006年冬季北京市大气气溶胶中PM10和PM2.5样品,采用气相色谱/质谱技术对样品中的多环芳烃进行检测.结果表明:北京市冬季大气颗粒物PM10和PM2.5中PAHs总量分别为520.5±476.9ng·m-3和326.8±294.3ng·m-3,且大部分存在于细粒子中,4环以上的稠环芳烃占总浓度的87%.根据荧蒽/芘等比值指标判别,北京市冬季PAHs主要以燃煤排放为主,其次是石油燃烧交通排放.风速增大和太阳辐射曝辐量增强,都会降低颗粒物中多环芳烃浓度.  相似文献   

8.
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)作为典型的持久性有机污染物(persistent organic pollutants,POPs)中的重要类别,具有半挥发性、生物蓄积性、长期残留性和明显的毒性(包括致癌、致畸、致突变)等特点,因此是环境中的一类重要污染物.PAHs衍生物的赋存浓度通常比PAHs母体低,是直接作用的诱变剂和致癌剂,具有比PAHs母体更高的致癌性和致畸性,毒性作用也更为直接,近年来PAHs衍生物引起了越来越多的关注.室内灰尘作为污染物的特殊载体,研究其中的PAHs及其衍生物的赋存、来源、人体暴露风险有重要意义.本文基于当前国内外对室内灰尘中PAHs及其衍生物的研究,对室内灰尘中PAHs及其衍生物的赋存、来源及其人体暴露风险进行了系统综述,最后提出了现有研究的不足,并对室内灰尘中PAHs及其衍生物今后的研究方向进行了展望.  相似文献   

9.
无锡冬季和春季大气中细粒子化学组分及其特性分析   总被引:1,自引:0,他引:1  
本研究对无锡冬(2011年1月)春(2011年5月)两季PM2.5、PM10颗粒物浓度进行了传统的膜采样及离线检测分析,并运用大气气体/气溶胶水溶性离子在线收集及分析(GAC-IC)系统对PM2.5颗粒物中水溶性无机离子(WSII)进行了在线检测,时间分辨率为30 min.无锡冬、春两季PM2.5的浓度分别为108.15±41.76μg·m-3和84.40±26.74μg·m-3,其PM2.5/PM10比值分别为0.81±0.07和0.78±0.07,有较强的二次气溶胶生成过程.铵可用性指数(J冬季=101.2%±22.3%,J春季=79.5%±20.2%)分析表明冬季无锡大气颗粒物中铵(NH+4)相对比较富余,而春季则出现铵(NH+4)亏损现象,春季光化学反应更为活跃,硫氧化率(SOR)由冬季的0.15±0.05增至春季的0.35±0.13,硫酸盐(SO2-4)浓度增加明显,导致铵(NH+4)相对不足.硫氧化率(SOR)没有明显的季节变化,冬、春两季均为0.15.细粒子中的WSII与气态污染物、气象因子、硫氧化率(SOR)和氮氧化率(NOR)等的主成分分析表明无锡大气光化学反应与污染物的其他来源,例如工业源、交通移动源、生物质燃烧源等,有很好的协同作用,共同推高了大气中颗粒物的浓度.观测期间同时测得冬季PM2.5颗粒中有机碳(OC)与元素碳(EC)浓度之间有较好的相关性(R2=0.839),两者有一个共同的主导源,而春季来源则比较复杂,两者相关性较差;二次有机碳(SOC)的半定量分析表明春季大气中有机气溶胶的形成有较强的二次转化过程.  相似文献   

10.
为了探讨武汉市不同类型大气污染过程中大气污染物变化特征,分析对比了沙尘、秸秆燃烧和霾污染过程中大气污染物(SO2,NO2,CO,O3,PM2.5和PM10)的变化特征及其影响因素。使用HYSPLIT模式计算了不同类型污染过程中气团轨迹,并利用潜在源区贡献(potential source contribution function,PSCF)和浓度权重轨迹(concentration weighted trajectory,CWT)分析方法,揭示了武汉市不同类型污染过程中大气污染物的潜在源区分布及其贡献特性。结果表明,不同类型污染下大气污染物变化不同。沙尘天主要以PM10污染为主,平均浓度为408.8μg/m^3,是干净天的5.9倍,PM2.5/PM10仅为29%。霾过程中主要以PM2.5污染为主,平均浓度为182.8μg/m^3,是干净天的3.7倍,PM2.5/PM10为90.4%。秸秆燃烧过程中大气污染物浓度均不同程度地增加,其中PM2.5、PM10和SO2的浓度分别为100.2μg/m^3,155.4μg/m^3和23.7μg/m^3,是干净天的1.8倍,1.6倍和1.6倍。表明,不同类型污染下大气污染物的日变化不同,不同类型污染过程中大气污染物的潜在源区差异较大。沙尘期间大气污染物的主要潜在源区为安徽、河南南部、沙尘源区的内蒙古和甘肃等地区。霾过程中大气污染物的主要潜在源区为湖南东北部、湖北东部、安徽西南部、浙江西部、江西北部和河南南部。秸秆燃烧过程中大气污染物的主要潜在源区为安徽、江苏西南部和河南东南部。  相似文献   

11.
天津市近地层PM2.5的垂直分布特征   总被引:10,自引:2,他引:8  
大气细颗粒物PM2.5是导致城市能见度降低的重要原因之一,研究低层大气细颗粒物的垂直分布特征,利于了解边界层内污染物的大气物理化学反应机制,能为大气污染综合治理决策提供新的科学数据.2006年8月16日-2007年8月31日期间以天津市255 m气象塔为观测平台,分别在40 m、120 m和220 m 3个不同高度进行大气污染物PM2.5质量浓度和气象要素的同步观测.对观测资料的分析表明:PM2.5质量浓度季节变化规律非常明显,冬季最高,春季最低.PM2.5日变化特征非常明显,呈明显的双峰变化规律:冬季峰值最大、春季最小.边界层内PM2.5质量浓度在各个高度存在明显差异,受逆温层影响,四个季节的早晨第一个峰值出现时间随高度增加均存在滞后现象,PM2.5从地面扩散到220 m大约需要2 h.各个观测高度PM2.5质量浓度随风向变化不大,得到天津市细粒子主要是由本地源生成的结论.  相似文献   

12.
通过研究遂宁市环境空气质量变化趋势、城区空气颗粒物组成及浓度变化,系统分析了遂宁市雾霾天气的污染状况及成因,并横向比较了四川省内各城市的空气质量.研究结果表明,细颗粒物(PM2.5)是遂宁市环境空气中的主要污染物.2012年遂宁市大气中PM2.5浓度值为35—119μg·m-3,平均值为68μg·m-3.2013年1—4月,PM2.5浓度值为21—120μg·m-3,达标率不到50%.尤其在2013年3月,PM2.5/PM10由62.0%—87.2%降低为45.3%.由此判断遂宁市环境空气质量主要受细颗粒物类型、气象条件以及大气污染物长距离迁移等因素影响,其中细颗粒物的最主要来源为机动车尾气排放,并提出了细颗粒物污染防治的对策措施.  相似文献   

13.
利用GC-MS对2008年5月至11月淮南市5个采样点大气可吸入颗粒物(PM10)样品进行分析,总结了研究区内PM10及其中16种PAHs的浓度特征、季节变化规律和来源解析.结果表明,不同采样点PM10浓度均偏高,超标率为14%—238%;PM10浓度水平为谢家集田十五小大通三小淮化集团理工校园.研究区内16种PAHs浓度总量的范围在15.20ng.m-3—111.58ng.m-3之间,平均浓度为64.36ng.m-3,4环以上的稠环芳烃占总浓度的86%.PAHs总量的季节变化与采样时环境温度显示出较好的负相关性,即秋季春季夏季.运用多环芳烃比值综合判断,淮南市大气PM10中PAHs主要以燃煤和机动车尾气混合来源为主,石油源和木材燃烧来源的贡献较小.  相似文献   

14.
厦门市大气PM10中PAHs的健康风险评估-BEQ评估   总被引:8,自引:0,他引:8  
通过比较城市大气PM10中优控PAHs的总量、苯并(a)芘(BaP)的浓度水平和BaP的等效致癌毒性(BEQ),评估厦门市大气有机污染的程度及其对人体的健康风险.结果表明,厦门市15种优控PAHs年平均浓度为16.08ng·m-3,BaP年平均浓度为0.70ng·m-3,BEQ为1.58.  相似文献   

15.
多环芳烃(PAHs)是大气颗粒物中重要的有机污染物,由于其致癌、致突变特性而广受关注。部分分子量大于300的高分子量多环芳烃(HMW-PAHs)已被发现具有很强的毒性,但目前对于HMW-PAHs的研究仍非常有限。为了解上海大气细颗粒物中HMW-PAHs的浓度、组成和毒性,使用大流量采样器于2013年4月—2014年4月期间采集了上海大气PM_(2.5)样品,利用GC-MS分析了其中19种分子量为302的高分子量多环芳烃(∑302PAHs)的质量浓度、组成及其季节变化。结果表明,上海PM_(2.5)中∑302PAHs的质量浓度具有显著的季节变化,春、夏、秋、冬季的平均质量浓度分别为2.2、1.4、2.1和9.7 ng?m~(-3),但302-PAHs的同分异构体组成没有明显的季节变化。HMW-PAHs不具挥发性,而低分子量PAHs在大气中的赋存状态受气-粒分配的影响,因此上海PM_(2.5)中∑302PAHs质量浓度占全部PAHs的比例呈现明显的季节变化,夏季(19%)显著高于秋季(12%)和冬季(11%)。5种具有明显致癌毒性的二苯并芘异构体DalB P、N23e P、DBae P、DBai P和DBah P在整个采样期间的平均质量浓度分别为44、1.6×10~2、3.4×10~2、43和5.2 pg?m~(-3);上述5种302-PAHs的苯并[a]芘毒性当量浓度(Ba Peq)占全部PAHs的Ba Peq的比例在春、夏、秋、冬四季分别为23%、47%、21%和21%。初步估算表明,2013—2014年采样期间上海∑302PAHs的平均大气干沉降通量为133 ng?m~(-2)?d~(-1),年累计干沉降量约304 kg。因此,在进行大气多环芳烃风险评估时有必要将具有明显毒性的5种302-PAHs纳入。研究结果可为大气细颗粒物环境影响评价提供一定的基础数据。  相似文献   

16.
大气颗粒物及部分气态前体物的连续在线观测   总被引:1,自引:0,他引:1  
《环境化学》2010,29(6)
<正>近年来,随着经济的高速发展、人口膨胀以及机动车数量的急剧增长,大气污染日益严重.其中大气细颗粒物PM2.5(指空气动力学当量直径≤2.5μm)是形成大气污染的重要污染物之一,在许多城市已经成为首要污染物。  相似文献   

17.
杭州市大气总悬浮颗粒物中多环芳烃的HPLC分析   总被引:2,自引:0,他引:2  
史坚  黄成臣  徐鸿  孙鸿良 《环境化学》2003,22(6):629-630
由于大部分致癌多环芳烃 (PAHs)与颗粒物 (TSP)有联系 .而分子量 (MW)≥ 2 2 8的PAHs绝大部分 ( >99% )是以颗粒态形式被采集的 .因此 ,分析研究大气颗粒物中PAHs的含量具有重要意义 .本文分析了杭州市 5个大气监测国控网络点一年 1 2个月TSP中 1 5种PAHs浓度的分布特征 .1 样  相似文献   

18.
不同高度大气颗粒物中多环芳烃的粒径分布   总被引:9,自引:0,他引:9  
在天津地区20m,40m和60m三个不同高度同步采集冬季大气颗粒物中PM10样品,测定了16种多环芳烃(PAHs)含量.不同高度PM10中PAHs的含量均表现出大气颗粒物中随高度先增后降的趋势,颗粒物质量中值直径(MMD)也呈现类似规律,但PAHs总浓度的MMD则呈向上递增的趋势.不同高度PAHs的粒径分布差别不大,高分子量的PAHs主要集中在空气动力学直径Dp<2um的细颗粒上,而Dp>2um的粗颗粒上低分子量的PAHs相对较多.  相似文献   

19.
本文研究了2014年1月天津市大气PM2.5中邻苯二甲酸酯(PAEs)的污染状况.结果表明,天津市大气PM2.5中PAEs污染以邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二异辛酯(DEHP)为主;PM2.5上载带的∑6PAEs浓度与PM2.5浓度存在相关关系;文教区PAEs浓度低于工业及居住区浓度;大气PM2.5中PAEs经呼吸的日均暴露量邻苯二甲酸二甲酯(DMP)和邻苯二甲酸二丁酯(DBP)较高,且男性高于女性.  相似文献   

20.
餐饮源是城市大气细颗粒物PM_(2.5)的一个重要来源,为了解餐饮源PM_(2.5)排放特征及来源,测定了室外烧烤和食堂两种不同类型餐饮源排放的PM_(2.5)浓度以及PM_(2.5)中的有机污染物;利用气相色谱-质谱仪(GC/MS)检测出主要污染物为正构烷烃、酸类、醛类、酮类、酯类、烯烃、多环芳烃等有机污染物,通过与大气对照样品的对比分析,对污染物的来源做了简要解析.比对结果显示,室外烧烤样品PM_(2.5)浓度为905.6±160.9μg·m~(-3)、食堂样品PM_(2.5)浓度为343.9±30.6μg·m~(-3)、大气对照样品PM_(2.5)浓度为76.7±1.7μg·m~(-3).室外烧烤是食堂排放PM_(2.5)质量浓度的2—3.4倍,是环境大气PM_(2.5)质量浓度的9.5—13.6倍.烧烤油烟排放的PM_(2.5)中有机物主要为有机酸(47.29%),其次是醛酮类(12.97%);校园食堂油烟样品中除了烷烃类(45.2%),脂肪酸类(11.76%)和醛酮类(8.84%)排放也较明显;脂肪酸类可能由动物脂肪灼烧产生,而醛、酮类物质可能来源于香精等食品添加剂的高温分解.大气对照样品中检测到少量醛酮类有机物,未检测到酸类有机物,由此推测醛、酮、酸可能是餐饮油烟中典型排放的污染物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号