首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 17 毫秒
1.
氨氮和硝氮在太湖水华自维持中的不同作用   总被引:8,自引:0,他引:8       下载免费PDF全文
通过室内实验和野外监测相结合的方法,探讨了氨氮(NH4+-N)和硝氮(NO3--N)在太湖水华自维持中的不同作用.室内实验结果表明,水华微囊藻在以NH4+-N为氮源时比以NO3--N为氮源时具有更高的生长以及光合能力,当生长在不同的NH4+-N/NO3--N(浓度比)上时水华微囊藻均优先吸收NH4+-N,而当NH4+-N浓度大于2mg/L时,水华微囊藻的生长速率急剧下降;野外监测结果显示,在太湖藻型区,水体中的氮源以NO3--N为主,除了竺山湾,其余湖区全年NH4+-N/NO3--N基本在0.5以下,NH4+-N年平均浓度在2mg/L以下.结果表明,太湖中巨大的氨再生量使得浮游植物能以NH4+-N为主要氮源生长,而低浓度NH4+-N环境避免了浮游植物的生长受到抑制,两者共同保证了夏秋季太湖浮游植物的高生长以及光合能力,使得微囊藻生长旺盛、蓝藻水华维持在严重状态.  相似文献   

2.
原水水质对输水管道硝化作用形成的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用配制水样模拟Ⅱ类、Ⅲ类和劣Ⅴ类地表水,利用管道模拟反应器研究不同原水水质条件下输水管道中硝化作用的形成及对输水水质的影响.结果表明:原水中氨氮(NH4+-N)及溶解氧(DO)含量对NH4+-N去除均有一定影响,DO充足时,去除率随原水中NH4+-N含量的增加而增加,DO浓度低时,DO成为影响NH4+-N去除的主要因素;原水NH4+-N含量对运行初期NO2--N积累有重要影响,NH4+-N含量越高,NO2--N积累量越大,随着生物膜的成熟,影响作用逐渐减弱;反应器中AOB数量主要受原水NH4+-N浓度的影响,随NH4+-N浓度升高而增加;NOB数量受NH4+-N和DO浓度的双重影响,DO含量低会抑制NOB活性,使NOB数量减少,导致NO2--N积累;输水管道中的硝化作用是水中及生物膜中硝化细菌共同作用的结果,但生物膜中硝化细菌存在水平高,其硝化作用占主导地位.  相似文献   

3.
采用配制水样模拟Ⅱ类、Ⅲ类和劣Ⅴ类地表水,利用管道模拟反应器研究不同原水水质条件下输水管道中硝化作用的形成及对输水水质的影响.结果表明:原水中氨氮(NH4+-N)及溶解氧(DO)含量对NH4+-N去除均有一定影响,DO充足时,去除率随原水中NH4+-N含量的增加而增加,DO浓度低时,DO成为影响NH4+-N去除的主要因素;原水NH4+-N含量对运行初期NO2--N积累有重要影响,NH4+-N含量越高,NO2--N积累量越大,随着生物膜的成熟,影响作用逐渐减弱;反应器中AOB数量主要受原水NH4+-N浓度的影响,随NH4+-N浓度升高而增加;NOB数量受NH4+-N和DO浓度的双重影响,DO含量低会抑制NOB活性,使NOB数量减少,导致NO2--N积累;输水管道中的硝化作用是水中及生物膜中硝化细菌共同作用的结果,但生物膜中硝化细菌存在水平高,其硝化作用占主导地位.  相似文献   

4.
在自制生物膜反应器中接种精养鱼塘底泥进行富集培养,以期启动同步短程硝化反硝化过程。富集过程中记录反应器进、出水DO、NH4+-N、NO2--N和NO3--N变化。经过179 d运行后,反应器NH4+-N去除率达80%以上,出水NO2--N浓度非常低,低至检测极限以下,且没有NO3-积累。实时荧光定量PCR技术定量富集培养前后研究氨氧化细菌、反硝化细菌密度和厌氧氨氧化细菌数量,发现反应器中氨氧化细菌和反硝化细菌浓度分别增加了53.4倍和8.3倍,未检出厌氧氨氧化菌。综合上述结果判断生物膜反应器内启动了同步短程硝化反硝化过程。  相似文献   

5.
在SBR短程硝化系统处理高氨氮污水过程中,探讨了温度、pH和DO对短程硝化的影响。实验发现,温度升高可以促进短程硝化实现,当温度在30℃时,短程硝化系统的稳定性能良好,NH4+-N的去除率和NO2--N的积累率均达到了最佳值。适宜的pH有益于NH4+-N的去除和NO2--N的积累,当pH为8.5时,系统的NO2--N积累率较好。DO浓度会影响系统中AOB和NOB的生长平衡,当DO处于0.7~0.9mg/L时,系统内AOB的生长形成优势,NO2--N积累率最高,短程硝化效果最佳。  相似文献   

6.
氨氮在饮用水生物滤池内的去除机制   总被引:2,自引:1,他引:1  
为探讨饮用水生物滤池对NH4+-N的去除机制,测定生物滤池进出水中NH4+-N、NO2--N、NO3--N、高锰酸盐指数、总磷、单质氮(N2)、温度和溶解氧(dissolved oxygen,DO)等指标,并采集生物滤池不同层高(0、10、20、40、60 cm)活性炭生物填料,应用分子生物学技术,对样品中的细菌种群进行研究.结果表明,根据进水NH4+-N浓度分为3个阶段,第一、二和三阶段都发生了"氮亏损"现象(出水无机氮之和小于进水无机氮之和),氮亏损的量(出水无机氮之和与进水无机氮之和的差值)分别为0.94、0.32和0.15 mg.L-1.氮亏损的量与进水中NH4+-N浓度有很好的正相关性,但与进水中高锰酸盐指数浓度没有线性关系.第一阶段水中N2的平均浓度随着生物滤池填料层高呈上升趋势,进水中N2平均浓度是14.04 mg.L-1,出水N2平均浓度为14.67 mg.L-1.测序结果显示活性炭上生物膜中氨氧化细菌(ammonia-oxidizing bacteria,AOB)全部归为3个常见属:Nitrosococcus、Nitrosomonas和Nitrosospira.当生物滤池进水NH4+-N浓度较高时,生物滤池中发生的"氮亏损"现象是由AOB的作用.  相似文献   

7.
芽孢杆菌与硝化细菌净化水产养殖废水的试验研究   总被引:11,自引:2,他引:9  
以枯草芽孢杆菌、地衣芽孢杆菌和硝化细菌为实验菌种,对水产养殖废水中的各项水质因子(pH、DO、NH4+-N、NO2--N、COD)进行控制或处理。结果表明,经投加微生物菌液处理的养殖废水水质均优于对照组:枯草芽孢杆菌和地衣芽孢杆菌可以降低废水的COD和NO2--N浓度,出水COD浓度小于100mg/L,NO2--N浓度小于0.6mg/L,COD去除率分别为67.97%、70.16%,NO2--N去除率分别为99.28%、99.51%;硝化细菌可以将废水NH4+-N和NO2--N的浓度降低到0.6mg/L以下,去除率分别为99.38%、81.44%;而菌液的投加对养殖水体的pH值影响不明显。三种微生物在净化水产养殖废水的作用上各有特点,可为形成共生长效的养殖水产环境修复微生物种群提供基础。  相似文献   

8.
农业废物好氧堆肥过程因子对细菌群落结构的影响   总被引:8,自引:2,他引:6  
采用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术研究了农业废物堆肥过程中细菌种群随时间的变化.同时,应用Quantity One2.0和Canoco4.5软件对获得的堆肥细菌种群数据与堆肥过程因子:环境温度、堆体温度、pH、含水率、水溶性有机碳(WSC)、C/N、水溶性氨氮(NH4+-N)和硝氮(NO3--N)进行冗余分析,并做出样点、种群与堆肥过程因子的二维排序图.结果表明,细菌群落(样点)以堆肥过程因子为梯度大体可划分为升温期(1~2d)、高温期(3~11d)、降温期(12~18d)和腐熟期(19~36d)4个阶段,每一阶段均有对应种群存在.不同的堆肥过程因子对细菌种群的影响大小依次为:NO3--N堆体温度WSCC/NNH4+-N含水率pH环境温度,其中,堆体温度、WSC、NO3--N、NH4+-N对细菌种群的影响极显著(p0.01),C/N、pH对细菌种群的影响显著(p0.05),含水率、环境温度对细菌种群的影响不显著.  相似文献   

9.
采用藻类生物测试标准方法研究了不同NO2--N初始浓度条件下铜绿微囊藻(Microcystis aeruginosa)的生长及生理变化.结果表明,相对BG11(NO2--N初始浓度为0)培养基,低初始NO2--N浓度(1,10mg/L)条件下铜绿微囊藻生长良好;高NO2--N初始浓度(20,30,40mg/L)条件下藻生长缓慢甚至停滞. NO2--N初始浓度由10mg/L到30mg/L,亚硝酸还原酶(NiR)活性和过氧化氢酶(CAT)活性呈增加趋势;在NO2--N初始浓度分别为20~30mg/L和20~40mg/L时,叶绿素a(Chl-a)含量和丙二醛(MDA)含量随NO2--N浓度增大而逐渐升高;在初始NO2--N浓度0,1,10,20,30mg/L条件下硝酸还原酶(NR)没有明显变化.这表明,铜绿微囊藻在NO2--N初始浓度10,20,30mg/L条件下能维持一定的生长,主要由于藻叶绿素含量的增加,NiR活性和防止细胞过氧化的酶CAT活性的提高所致.  相似文献   

10.
利用UAFB反应器富集培养了厌氧氨氧化细菌,并在此基础上考察水力停留时间(HRT)对厌氧氨氧化系统处理效果的影响。结果表明:HRT对厌氧氨氧化系统影响较大,当HRT为4 h时,系统出水NH4+-N、NO2--N去除率降至65%~60%,出水浓度则分别为15 mg/L、20 mg/L,表明过短HRT会导致含氮污染物去除不完全;HRT为6 h时,系统中NH4+-N去除率均在95%以上,出水NH4+-N≈1 mg/L。系统中NO2--N去除率均在92%以上,出水NO2--N≤5 mg/L;当HRT继续延长至10 h,去除效果无明显变化,出水NH4+-N≈1 mg/L,NO2--N≤5 mg/L,NO3--N平均5.6 mg/L。因此,在该研究中HRT为6 h效果最佳,总氮容积去除负荷为0.57 kg/(m3·d),厌氧氨氧化(ANAMMOX)反应器氨氮去除量、亚硝态氮去除量和硝态氮生成量之比为1∶1.19∶0.39。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号