首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 420 毫秒
1.
珠三角秋季典型气象条件对空气污染过程的影响分析   总被引:2,自引:0,他引:2  
利用空气质量指数(AQI)、主要大气污染物浓度和气象要素、天气图等数据资料,结合中尺度数值天气预报模式WRF,对2014年10月珠三角地区污染期间的天气形势及气象特征进行了分析.结果表明,WRF模式可以较好地反映珠三角地区主要城市地面和高空气象要素的时空变化,9个城市平均地表的温度、相对湿度和风速的模拟值与观测值的相关系数分别为0.90、0.87和0.78.对2014年10月3次污染过程的分析表明,造成该时段珠三角地区空气污染的天气形势主要是高压底部型和均压场型.静风或小风(2 m·s~(-1))及稳定的大气层结均不利于污染物的扩散,同时由于偏北气流输送周边污染物到珠三角地区,导致污染物浓度不断增加.相对湿度低于65%时,珠三角地区首要污染物以O_3为主;相对湿度高于70%时,PM_(2.5)浓度逐渐增加,成为主要污染物.高温等气象条件会影响光化学反应,加重珠江三角洲的空气污染,表现了该地区大气复合污染的特性.  相似文献   

2.
珠江三角洲秋季典型气溶胶污染的过程分析   总被引:2,自引:0,他引:2  
为了解大气中各物理和化学过程对气溶胶浓度的贡献情况,利用Models-3/CMAQ模式系统对珠江三角洲(以下简称珠三角)秋季典型气溶胶污染进行研究.模拟时间是2012年10月,期间珠三角主要受高压系统的控制,在17日冷锋过境前后高压天气形势发生转变,风向从东北风转为偏东风.结果表明,珠三角秋季PM2.5浓度呈现西高东低的水平分布特征,随着高度的上升浓度高值中心也向西南方向偏移;受大气边界层高度的影响,陆地上PM2.5输送高度呈现白天高夜晚低的变化特征;过程分析结果表明源排放,水平输送和垂直输送是影响近地面PM2.5浓度变化的主要过程;本地污染物排放是城市中心(广州站)PM2.5浓度升高的主要原因,而在下风向位置(江门站)外来污染物的水平输送过程是PM2.5的最主要来源.  相似文献   

3.
长江三角洲地区大气二恶英类污染物输送-沉降模拟研究   总被引:3,自引:1,他引:2  
张珏  孟凡  何友江  张艳燕  朱彬  朱琦 《环境科学研究》2011,24(12):1393-1402
大气中的二恶英类物质(PCDD/Fs)是一类难降解的有毒污染物,可对人类和其他哺乳动物的健康构成危害.二恶英类物质主要是由废物焚烧、金属冶炼和造纸化工等行业所产生. 二恶英类物质为半挥发性物质,可以在气态和气溶胶之间相互转移,从而影响其大气物理和化学过程. 利用耦合有机物吸收和黑碳吸附的二恶英类污染物颗粒态、气态相间分配模块和化学转化的区域大气化学、输送模式(CMAQ)模拟了2006年1月,4月,7月和10月长三角(长江三角洲)地区PCDD/Fs在大气中的输送、转化和沉降等演变过程,探讨了大气中二恶英类污染物的季节变化规律和沉降特征. 模拟结果表明,长三角地区的二恶英类污染物排放存在着明显的长距离输送特征和区域影响;冬季大气二恶英类污染物浓度明显高于夏季,湿沉降是其主要的沉降途径.   相似文献   

4.
2015年9月7-16日珠三角地区出现了一次区域性的空气污染过程。利用地面空气质量和气象要素监测数据,结合后向轨迹模式综合分析了此次过程的污染特征及其成因。结果表明,此次事件主要是臭氧浓度上升导致的区域性污染,重污染区域呈现由珠三角中北部广佛肇地区向南部沿海城市转移的趋势;高压均压场控制、大范围盛行下沉气流以及地面风速小的静稳天气条件是此次污染过程持续和加重的重要气象因素;污染气团的远距离输送影响了该地区的空气质量状况。  相似文献   

5.
2013年10月长株潭城市群一次持续性空气污染过程特征分析   总被引:2,自引:2,他引:0  
廖志恒  范绍佳  黄娟  孙家仁 《环境科学》2014,35(11):4061-4069
2013年10月21~31日长株潭城市群经历了一次持续性空气污染过程.利用地面空气质量监测资料、地面气象资料及探空资料综合分析了此次污染过程与大气环流、边界层气象条件之间的相互关系,并利用卫星遥感火点监测资料和HYSPLIT4模式,分析了此次过程大气污染物的来源及输送路径.结果表明,过程前期(21~26日),污染物缓慢积累,过程后期(27~31日),PM2.5、CO、NO2等焚烧特征污染物浓度急剧升高,秸秆焚烧污染物的长距离输送是后期空气污染加重的主要原因.火点监测和后向轨迹分析表明,过程前期气流主要流经长株潭城市群东北方向的安徽、湖北等地,流经地区火点分布较少,后期气流主要流经长株潭城市群东南方向的江西等地,流经地区火点分布较多.高压均压场背景环流导致的稳定大气层结、南北冷暖气流对峙造成的地面静小风,是长株潭城市群污染过程发展、维持和加强的重要条件,污染物长距离输送对长株潭城市群区域空气质量有重要影响.  相似文献   

6.
兰州市大气重污染气象成因分析   总被引:18,自引:8,他引:10  
兰州市曾经是全国乃至全世界空气污染最严重的城市之一,重度空气污染特征明显.根据兰州市环境保护局公布的大气污染数据及气象局的气象观测数据,采用时间序列法和相关统计方法对兰州市2002—2011年空气污染指数(Air Pollution Index,API)大于200的大气重污染特征进行研究,并探析了其气象学成因.结果表明,静稳型重污染发生天数约占重污染发生总天数的77%,而沙尘型重污染只占23%.静稳型重污染是兰州市最主要的大气重污染类型,它往往存在PM10、SO2和NO2三种污染物同步累积的过程,持续时间长,主要发生在冬季;而沙尘型重污染持续时间短,由于外来高浓度沙尘输送的影响,PM10浓度会急剧升高,而SO2和NO2浓度则会明显下降(SO2、NO2浓度明显低于静稳型重污染),几乎都发生在春季.对它们的成因分析表明:静稳型重污染的气象学成因主要是风速小,稳定能量大,大气环境稳定度大,不利于湍流扩散,本地源污染物持续积累造成;沙尘型重污染气象学成因主要是春季气候干燥,相对湿度低,造成大风沙尘天气,给兰州市输送大量沙尘颗粒形成大气重污染.此研究结果可为兰州市大气重污染的防治提供科学依据.  相似文献   

7.
2012年6月8~11日,江苏安徽2省发生了一次持续性的空气污染过程.利用MODIS观测的气溶胶产品和地面气象资料,结合火点监测资料和HYSPLIT后向轨迹模式,分析气溶胶光学厚度(AOD)、细粒子比例(FMF)、空气污染指数(API)的特征,探究这次空气污染的形成原因.研究表明,这次过程中苏皖2省8个代表城市的能见度大部分时间低于10km,相对湿度低于90%,API均达到或超过污染等级,AOD显著增长,且污染物以人类活动产生的细粒子为主.区域细粒子比例(RFMF)达0.79,高FMF(>0.6)出现的概率高达74.8%.另外,苏皖2省稳定的天气形势,不利于污染物扩散.6月8~11日,苏皖2省(北部地区为主)出现大量的火点,表明有秸秆焚烧现象的存在.从HYSPLIT模式的模拟结果来看,苏皖2省8个代表城市在此期间主要受到偏西方向的气流以及局地气流的影响,偏西方向的气流有利于外部秸秆焚烧的污染物经过输送影响本地区,同时局地气流不利于扩散,从而造成污染物积累,形成污染.  相似文献   

8.
利用WRF-Chem模式对2015年12月21—23日南京一次重霾污染过程进行模拟.基于合理的模拟评估,采用大气传输通量计算法,着重分析了此次霾污染过程中模拟的南京地区PM_(2.5)的传输收支特征,以及周边地区大气污染物传输对南京市PM_(2.5)变化的贡献.结果表明,此次霾污染过程中,本地源与外来源区域传输共同影响着南京市的空气质量.PM_(2.5)的跨区域传输是此次重霾污染发生和消亡的重要因素.在霾污染事件的形成维持阶段,南京地区是作为周边地区PM_(2.5)的接收区,大气污染物主要由南京的西边界输入,大气污染物的外源输入是南京PM_(2.5)污染的主要贡献来源,占南京PM_(2.5)污染的84%.在霾污染事件的消亡阶段,南京地区则是作为周边地区PM_(2.5)的源,大气污染物主要由南京的东边界持续向外输出.  相似文献   

9.
冬季山谷风和海陆风对京津冀地区大气污染分布的影响   总被引:4,自引:4,他引:0  
为了弄清冬季山谷风、海陆风对京津冀地区大气污染时空分布的影响,利用2016年12月地面加密自动气象站逐时观测数据和中国环境监测总站发布的逐时PM_(2.5)浓度数据,计算平均风矢量场和平均PM_(2.5)浓度场,分析山谷风、海陆风变化规律及其对PM_(2.5)浓度分布的影响.结果表明,在山谷风日,中午至下午谷风将位于河北太行山东部地区的污染物向北输送.傍晚以后,在北京西部、北部,以及河北太行山山前出现的山风与偏南风构成"人字形"辐合线,辐合线的汇聚作用使北京地区、廊坊,以及保定、石家庄、邢台等地大气污染加重.在海陆风日,下午至前半夜,河北中东部沿海地区出现东南向海风,深入内陆到达天津东南部地区,海风前缘区域大气污染加重;通过对中国科学院大气物理研究所铁塔0~325 m风向风速与PM_(2.5)浓度时间变化关系分析,以及利用Cressman法插值得到的地面风向风速和PM_(2.5)浓度二维格点场,分析北京地区重霾污染过程中近地层山谷风和海陆风对大气污染形成的影响:中午至下午,谷风将大气污染物向北京输送.傍晚以后,大气污染物在山风与偏南风形成的辐合线附近汇聚,在北京地区及以南地区形成PM_(2.5)高污染区.凌晨至早晨北京被山风控制,大气污染物被吹离北京、滞留在北京以南至天津西北地区.冬季,山谷风的输送和汇聚作用使大气污染物以日为周期不断循环和累积,对北京地区至北京以南地区、河北太行山东部地区的大气重污染形成起重要作用.  相似文献   

10.
使用WRF-CMAQ模式模拟广东省2021年3月25~27日区域O3污染过程,模拟效果良好.在珠三角范围内O3污染消退时,韶关市出现了异常O3污染.以韶关为主要关注对象,针对珠三角地区向韶关的O3输送过程进行分析与研究,利用CMAQ模式中的过程分析(PA)与来源解析(ISAM)对污染传输与发展过程进行定量评估.结果表明:3月25日珠三角地区产生的O3污染气团在高空残留,25日夜间至26日上午输送至韶关并下传,高空水平输送至韶关上空的O3有66.1%下传,物理输送过程起主导作用;26日来自广州、东莞、清远、佛山的O3比25日增加了12倍,区域输送是韶关市异常O3污染的主要贡献,广州市与东莞市是区域输送的主要源地;韶关市地处盆地,易受到域外输送影响,O3污染防治应注重区域的协同减排,联防联控.  相似文献   

11.
2011年10月珠江三角洲一次区域性空气污染过程特征分析   总被引:3,自引:1,他引:2  
2011年10月18—25日珠江三角洲地区出现了一次区域性空气污染过程,重污染区域集中在西部,后期向中部转移,PM10为首要污染物.针对本次空气污染过程的研究发现,此次珠江三角洲地区空气污染过程主要受大尺度冷高压活动的影响,一直为下沉气流所控制,500 m以下近地层风速很小,边界层高度较低,存在贴地逆温层,非常不利于污染物的输送和扩散.PM10浓度与风速、能见度呈显著的负相关关系,与温度相关性不显著;且与风速和温度的相关性存在滞后性.稳定天气形势、大范围下沉气流、近地层静小风和贴地逆温是导致这次区域性空气污染过程的气象原因,PM10浓度增加导致珠江三角洲能见度下降.  相似文献   

12.
将回流指数引入珠三角污染气象条件的研究中,尝试使用回流指数判别形成区域大气污染的机理.运用中尺度数值模式WRF得到珠三角精细化的回流指数时空分布,同时与边界层外场观测试验结果进行比对从而验证模式对边界层内风场的模拟效果.最后,分别对干湿季冷高压影响下的污染过程进行分析,湿季选取2013年4月13—16日的珠三角重污染过程,干季选取同年12月8—10日的污染过程.结果表明:在本研究的两次过程中,使用回流指数Rcritical=0.6作为阈值能较好地区分局地污染物回流堆积与上风向污染物输送两种因素在冷高压型污染过程中何者占主导,当区域中回流指数普遍低于0.6则是污染物局地回流堆积作用更明显,若普遍高于0.6则是受上风向污染物的输送影响更明显;在局地回流堆积为主要形成机理的污染过程中,地面污染物浓度与边界层整体回流系数呈反方向变化关系,地面污染物浓度峰值对应边界层回流系数谷值;在污染物输送为主要形成因素的污染过程中,边界层中低层回流系数达到峰值时代表该区域此时受上风向风场输送作用最显著,地面污染物浓度同时达到峰值.  相似文献   

13.
基于风廓线仪等资料的珠江三角洲污染气象条件研究   总被引:7,自引:3,他引:4  
利用珠江三角洲区域空气质量资料和珠海、南沙、增城的逐30 min风廓仪观测资料,以及清远探空站每天08时和20时的温度探空资料等,研究了2012年10月珠江三角洲出现的大范围持续性污染天气期间的大气边界层特征.结果表明:2012年10月珠江三角洲出现的大范围持续性污染天气主要是受到弱冷空气南下和台风外围下沉气流天气形势的影响;在污染日,增城、南沙和珠海低层风速普遍小于3 m·s-1,300m高度以下风速甚至小于2 m·s-1,增城和珠海观测站的通风量普遍小于5000~6000 m2·s-1;非污染日的通风量则远远大于污染日;在近海的南沙站和珠海站,海陆风等局地环流的的作用不利于污染物的扩散,海风约出现于下午6时,最大影响高度约600~800 m;逆温层是导致重污染的天气的重要原因,清远探空站频繁出现逆温层,甚至出现多层低空逆温,污染日的逆温层平均厚度和平均强度都较大.  相似文献   

14.
PM_(2.5)and PM_(10)samples were collected at four major cities in the Pearl River Delta(PRD),South China,during winter and summer in 2002.Six water-soluble ions,Na~ ,NH_4~ ,K~ ,Cl~-,NO_3~- and SO_4~(2-)were measured using ion chromatography.On average,ionic species accounted for 53.3% and 40.5% for PM_(2.5)and PM_(10),respectively in winter and 39.4% and 35.2%,respectively in summer. Secondary ions such as sulfate,nitrate and ammonium accounted for the major part of the total ionic species.Sulfate was the most abundant species followed by nitrate.Overall,a regional pollution tendency was shown that there were higher concentrations of sulfate, nitrate and ammonium in Guangzhou City than those in the other PRD cities.Significant seasonal variations were also observed with higher levels of species in winter but lower in summer.The Asian monsoon system was favorable for removal and diffusion of air pollutants in PRD in summer while highly loading of local industrial emissions tended to deteriorate the air quality as well.NO_3~-/SO_4~(2-) ratio indicated that mobile sources have considerably contribution to the urban aerosol,and stationary sources should not be neglected. Besides the primary emissions,complex atmospheric reactions under favorable weather conditions should be paid more attention for the control of primary emission in the PRD region.  相似文献   

15.
珠三角冬季PM2.5重污染区域输送特征数值模拟研究   总被引:4,自引:2,他引:2  
利用嵌套网格空气质量模式系统(NAQPMS)及其耦合的污染来源追踪模块,针对2013年1月珠三角区域的PM_(2.5)重污染过程输送特征进行了数值模拟研究.结果表明,污染气团首先形成于广州、佛山地区,并在弱偏北风的作用下南移加强,影响整个珠三角区域.重污染期间,广州(64.9%)、佛山(58.9%)的PM_(2.5)主要来自本地贡献,是区域输送最主要的来源地区;中山(51.9%)、珠海(66.2%)的PM_(2.5)主要来自外来贡献,是区域输送主要的受体地区.重污染期间,广州和佛山对中山的PM_(2.5)日均贡献率之和总体保持在25%以上,污染最重时达到40%.交通(26%)、工业(24%)、扬尘(16%)、火力发电(15%)和生物质燃烧(8%)是对中山贡献最大的5类源:工业源中山本地与外来输送贡献率基本相当;交通和扬尘源以中山本地贡献为主,贡献率分别为55%和67%;火力发电和生物质燃烧源以外来输送为主,贡献率分别为56%和62%.各类排放源的外来输送中,以广州、佛山所占的比例最大.  相似文献   

16.
贾佳  丛怡  高清敏  王玲玲  杨静静  张国辉 《环境科学》2020,41(12):5256-5266
为揭示郑州市冬季空气污染过程及形成原因,选取郑纺机国控站点为采样点,探讨2019年12月郑州大气污染物浓度和主要气象参数特征,对比不同污染阶段PM2.5水溶性离子、元素和碳质组分浓度变化,并利用空气质量模型模拟结果,分析采样期间污染源排放与区域传输对采样点PM2.5质量浓度的贡献.结果表明,采样期间第一次和第二次重污染形成和消散过程略有差异,分别呈现出"缓慢累积、缓慢清除"和"缓慢积累、快速清除"的特征.第一次和第二次重污染时段NO3-、SO42-和NH4+质量浓度占PM2.5比值达到41.5%和46.2%,OC/EC比值分别为4.0和4.5,二次气溶胶颗粒的大量生成是两次重污染形成的主要原因.采样期间本地、东部、南部、西部和北部区域对采样点PM2.5浓度贡献占比均值分别为58.0%、2.4%、6.7%、6.9%和12.7%,第一次重污染是本地污染物排放和外来源区域传输共同作用的结果,期间西部和南部区域及外来工业源贡献占比有所升高;而第二次重污染则主要受到本地大气污染物累积的影响,期间交通源、扬尘源和燃煤源污染贡献骤增,外部区域对采样点PM2.5浓度的影响有所减弱.  相似文献   

17.
采用高分辨气相色谱/高分辨质谱法对珠三角地区2019年11月冬季期间和2020年8月夏季期间大气环境中17种氯取代二■英的现状水平进行了测定,并在此基础上对其空间分布、指纹特征、指示性单体和区域迁移特征也进行了分析.结果表明,夏季和冬季二■英的浓度平均值分别为1.40 pg·m-3和5.14 pg·m-3,而毒性当量(以I-TEQ计)平均值分别为0.087 pg·m-3和0.076 pg·m-3.同时,9个城市夏季和冬季二■英的空间分布不一致,这可能由各地区采样期间的气象条件和排放源的影响导致. OCDD、 1,2,3,4,6,7,8-HpCDD、 OCDF和1,2,3,4,6,7,8-HpCDF是夏季和冬季的主要指纹特征单体;而2,3,4,7,8-PeCDF和1,2,3,4,7,8-HxCDF是主要的毒性贡献单体,且贡献率越大,其与总毒性当量的线性相关性越强.由后向轨迹模拟结果发现,夏季受东南偏南季风影响,气团由海上迁移至陆地,导致夏季二■英浓度较低,且高浓度区域主要受本地排放源影响;而冬季受东北...  相似文献   

18.
以大气污染物协同控制与精准治理的需求为导向,开展湖北省荆州市大气污染物的来源分析.基于FLEXPART-WRF模式揭示了2008—2017年荆州市PM2.5周边源"影响域"的季节气候特征,估算了大气污染物区域传输和局地排放的相对贡献,确定出不同季节的大气污染物主要传输通道.结果表明,荆州地区PM2.5主要"影响域"为湖北、湖南、河南和安徽省.不同季节湖北省外源传输对荆州PM2.5"影响域"的贡献率分别为春季50.4%、夏季33.9%、秋季42.6%、冬季43.0%和年均45.1%.春季3条区域传输通道分别为北通道(沿南阳盆地-荆州)、东通道(沿长江航道-荆州)以及南通道(沿雪峰山-荆州);夏季主要为南通道;秋、冬季分别为北通道、东北通道(沿大别山低山丘陵-荆州)及东通道.针对荆州主要3类重污染天气型的典型个例"影响域"分析表明,高压静稳型PM2.5污染主要来源于本地排放,省内贡献率达87.8%;低压倒槽型PM2.5污染主要来源于偏南输送和本地累积,省内贡献率达55.0%;冷锋输送型PM2.5污染主要来源于北路区域传输,省外贡献率达77.2%.对于冬季重污染期间,建议重点围绕荆州本地与省内荆门、襄阳、孝感、天门、潜江、武汉、随州、宜昌及省外常德、南阳、信阳等地开展协作,加强区域间大气污染联防联控.该项研究可为区域大气污染精细化管控与靶向治理提供科学依据.  相似文献   

19.
2006~2012年珠三角地区空气污染变化特征及影响因素   总被引:10,自引:0,他引:10  
利用粤港珠江三角洲区域空气监控网络2006~2012年监测结果,分析了珠三角地区SO2、NO2、O3和PM10浓度的年、月变化及空间分布特征,并对产生时空分布变化的原因进行了剖析.结果表明:7年来,珠三角地区SO2、NO2和PM10浓度呈下降趋势,降幅分别为61.7%、17.4%和24.3%,O3浓度呈上升趋势,增幅为12.5%,总体而言,珠三角地区空气质量呈好转趋势;湿季(4~9月)空气质量明显优于干季(10月至翌年3月),各污染物浓度的月变化均呈双峰型,SO2、NO2和PM10峰值浓度出现在12月和3月,O3峰值浓度出现在10月和5月;SO2、NO2和PM10浓度高值区主要集中在中部的广佛地区,O3浓度在外围郊区呈现高值,各部分地区的污染物浓度变化趋势不一致,中部经济核心区一次污染物浓度下降趋势更为显著.珠三角地区空气质量的变化受多方面因素的影响,经济下行和政府治理是驱动一次污染逐年好转的主要因素,而政府对VOCs排放控制相对薄弱,VOCs排放与气候变化的共同作用可能是导致二次污染(尤其是O3污染)加剧的原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号