首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
针对暴雨时市政污水的特点,通过混凝试验考察了混凝剂投加量、重辅介质投加量、投加顺序、搅拌条件和静沉时间等因素对重辅强化混凝效果的影响。试验结果表明:重辅强化混凝后污染物去除效果优于常规混凝工艺;在最优条件下,即PAC35mg/L,重辅介质300mg/L,PAM0.8mg/L,混合快搅强度300r/min(55s),絮凝慢搅强度70r/min(7min)时,SS、COD和TP的去除率分别达到73.3、34.7和67.9%。该法可强化混凝效果,减少混凝剂投加量,缩短水力停留时间,为拓宽暴雨时市政污水的应急处理技术领域提供了参考。  相似文献   

2.
化学生物絮凝工艺污染物去除试验研究   总被引:5,自引:2,他引:5  
化学生物絮凝污水处理工艺是一种新的一级强化处理工艺。该工艺在传统的化学混凝的基础上将沉淀池内的污泥回流至化学生物絮凝池,利用化学混凝和污泥吸附的协同作用去除污水中的污染物。中试试验结果表明,聚合硫酸铝铁絮凝剂投加量为70mg/L,PAM投加量为0.5m g/L时,COD、TP和SS去除率分别为61.8%、74.5%和74.6%。化学生物絮凝池内污泥富集了未反应的絮凝剂,这部分絮凝剂对污水中TP具有很好的去除作用。化学生物絮凝池内污染物的沿程分析显示,回流污泥与污水充分接触可促进TP的进一步去除。  相似文献   

3.
活性污泥絮体粒径分布与分形维数的影响因素   总被引:8,自引:3,他引:5  
絮体粒径分布和分形维数是活性污泥的重要参数.应用激光粒度仪测量了好氧活性污泥絮体在絮凝过程的粒径分布,研究了速度梯度、VSS/SS、EPS含量及Zeta电位对絮体粒径分布的影响.结果表明,絮体平均粒径与速度梯度显著负相关(R2>0.80),与Kolmogorov尺度数量级基本相当,其间差异性与污泥VSS/SS、絮体强度等有关;相同的速度梯度下,絮体平均粒径与VSS/SS或EPS含量显著正相关(R2>0.85),与Zeta电位负相关.有机质和EPS在活性污泥絮凝中作用明显,会增强絮体强度,提升絮凝效果;EPS中蛋白质比多糖对絮凝的促进作用更明显.基于显微图像分析方法,得到了好氧活性污泥絮体二维分形维数为1.28~1.72,三维分形维数为1.70~2.69.絮体分形维数随VSS/SS或EPS含量的增加而减小;对于相同的活性污泥,絮体三维分形维数随粒径增大而减小,符合幂函数关系式.  相似文献   

4.
选取五种常用无机混凝剂,把活性污泥与生活污水按一定比例混合后,进行混凝试验,结果表明,三氯化铁去除TP的效果最好,在投加量为99 mg/l时,可去除污水中88%的TP。三种混凝剂FeCl3、PFS、PAFC与PAM复合进行参数优化的正交试验,对TP有最佳处理效果的絮凝条件为:投加FeCl3,投加量为99 mg/l,投加顺序为FeCl3先投加1 min,以污泥恰搅起不分层的速度搅拌(约160 r/min)30 min。试验结果对投加混凝剂活性污泥法选择合适的混凝剂有借鉴作用。  相似文献   

5.
采用硅藻土对煤矿生活污水氧化沟出水进行混凝搅拌实验,考察了硅藻土投加量、搅拌时间、搅拌速度对总氮(TN)、总磷(TP)和悬浮物(SS)去除效果的影响。结果表明,在投加量80 mg/L、搅拌速度80 r/min、搅拌时间20 min的条件下,水样沉淀后上清液TN、TP和SS浓度分别为13.23 mg/L、0.47 mg/L和1.92 mg/L,达到GB18918-2002一级A标准,TN、TP和SS去除率分别为27%、83%和88%。  相似文献   

6.
PAC与PDMDAAC复合混凝剂去除高浊度水中有机氯   总被引:1,自引:0,他引:1  
以聚合氯化铝(PAC)和聚二甲基二烯丙基氯化铵(PDMDAAC)为原料制备复合混凝剂,采用强化混凝的处理方法,对高浊度水体中有机氯(OCPs)以及浊度去除效果进行研究.考察了PAC-PDMDAAC复合比例、复合混凝剂投加量、水样初始浊度、慢速搅拌时间、pH值等因素对浊度和OCPs去除效果的影响,结合絮体分形维数和Zeta电位对去除效果进行验证.结果表明,复合比例对处理高浊水体中的OCPs以及浊度效果影响较大,PAC与PDMDAAC复合比例为5:1,投药量为1mL/L,慢速搅拌时间为15min时,OCPs和浊度去除率达到最佳;随着初始浊度的升高,水体中OCPs的去除率也随之增加,表明PAC-PDMDAAC复合混凝剂更适用于高浊度水中OCPs和浊度的去除;复合混凝剂与其他混凝剂相比,其最佳pH值范围较广,当pH值为4时,OCPs和浊度去除率达到最佳.利用絮体分形维数和Zeta电位两种表征手段对混凝效果进行进一步探讨,说明了实验结果的正确性.  相似文献   

7.
将硫酸铝和壳聚糖复配作为微絮凝助滤剂(AS-CTS),考察其强化过滤性能.利用分子量分级、荧光光谱等手段分析有机物的去除特性,通过Zeta电位、絮体粒径、分形维数的变化分析其强化过滤机理.结果表明:AS-CTS较AS、CTS强化过滤效果明显,在AS/CTS复配比为2:1、CTS投加量0.3mg/L,转速300r/min,搅拌时间2min的条件下,砂滤出水浊度能达到0.1NTU、颗粒物125个/mL,残余铝浓度0.02mg/L;浊度和颗粒物去除率较未加AS-CTS分别提高了58%、61.7%.AS-CTS强化过滤可有效去除分子量>30KDa的腐殖酸和1~3KDa间的色氨酸类蛋白、溶解性微生物代谢产物、类富里酸.AS-CTS主要靠高分子吸附架桥作用和界面化学作用,增加胶体颗粒在滤料表面的粘附;通过形成较大粒径和分形维数的微絮体,增强絮体向滤料表面的迁移.  相似文献   

8.
采用聚合氯化铝(PAC)作为混凝药剂,利用混凝-气浮技术去除水中铜绿微囊藻(MA),用图像法对絮凝体的分形维数进行测定,分析不同混凝条件下的气浮除藻效果以及PAC-MA絮凝体的形态学特征,并探讨两者的关系.结果表明,在快速混合搅拌强度和时间分别为500 s-1和1 min,回流比为10%条件下,PAC最佳投药量范围为5.6-9.8 mg/L Al2O3,最佳点为8.4 mg/LAl2O3;最佳的絮凝反应搅拌强度范围为50~80 s-1,最佳点为50 8-1;最佳的絮凝时间范围为5~8 min;投药量、絮凝反应搅拌强度及时间对PAC-MA絮凝体形态有着显著影响,在最佳混凝条件下,絮凝体的二维分形维数D2较小,在1.168 8~1.235 7之:间,相对应的絮凝体的平均粒径较大,在300~500 μm之间;在适当的混凝条件下,结构疏松,枝权较多,尺寸较大的PAC-MA絮凝体与气泡粘附效果好,容易气浮去除.  相似文献   

9.
通过设置水平隔板强化水力扩散作用,提高了普通混凝反应器的混凝效果;比较了改良与普通混凝反应器对某污水厂二级生化出水的处理效果:在相同的pH值、速度梯度、混合及絮凝时间、沉降时间以及相同的混凝剂种类及剂量下,改良混凝反应器对CODCr、总磷(TP)及浊度的去处效果都优于传统的混凝反应器;当达到相同的CODCr,TP和浊度的去除率时,聚合氯化铝(PAC)投加量分别可以降低25%~50%,20%~30%,20%左右,因此可以大大降低成本。可见改良后的反应器通过改善水力条件、增强传质作用,强化了原水和混凝药剂的混合作用,改善了混凝处理效果,提高了各污染物的去处率,给污水厂及再生水厂混凝沉淀工艺的改造提供了借鉴。  相似文献   

10.
基于Zeta电位的硅藻土复配剂强化混凝研究   总被引:1,自引:0,他引:1  
采用硅藻土与传统无机絮凝剂复配处理模拟生活污水,考察硅藻土复配剂强化混凝过程中絮体Zeta电位的变化,以及浊度和COD的去除情况,研究絮体Zeta电位与强化混凝效果的关系。实验结果表明,絮体的Zeta电位与复配剂的强化混凝效果密切相关,可用于反映硅藻土复配剂的混凝处理效果。研究发现,氯化铝复配剂强化混凝时絮体Zeta电位在加药后迅速上升,25min后趋于稳定;絮体Zeta电位在pH值等于7时接近等电点,此时浊度与COD去除率最高,分别达到99.05%和45.77%;用硅藻土复配剂强化混凝时Zeta电位的控制值为-9.0~0mV之间,不同无机絮凝剂与硅藻土复配混凝时获得较好混凝效果的Zeta电位控制值略有差异。  相似文献   

11.
三种常见混凝机理为主导条件下絮体特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
以模拟低浊微污染水为原水,硫酸铝[Al2 (SO4)3]为混凝剂,考察了3种常见混凝机理(电性中和、吸附架桥和网捕卷扫)为主导条件下絮体的成长过程、二维边界分形维数(Dpf)和比表面积及其与混凝效果的相关性.结果表明:吸附架桥为主导机理下絮体最大增长速率S (0.951)最快,达到稳定后絮凝指数FI最大(3.7%),二维边界分形维数Dpf最大(1.587),絮体呈块状且絮体间出现孔状间隙,比表面积介于网捕卷扫和电性中和之间[网捕卷扫(83.646m2/g)>吸附架桥(98.808m2/g)>电性中和(116.046m2/g)];FI值、S及Dpf变化与浊度去除率相关性较好,其相关系数分别达0.979、0.982和0.963,同时比表面积大的絮体吸附容量大,有机物的去除率高.  相似文献   

12.
为了研究高效氯化偶合絮凝剂对有机物含量较高原水的应用效果.进行了氧化偶合絮凝法强化处理受污染湖水的试验研究.并对其作用机理进行了初步探讨。结果表明.高效氧化偶合絮凝法对COD,SS,NH3^-N和TP均有良好的去除效果.在最佳条件下,去除率分别高达85%、95%、87%和96%.出水COD,SS,NH3^-N和TP的平均浓度分别为5.8、1.4、1.6和0.9mg/L。作用机理分析表明.氯化偶合絮凝剂在处理过程中充分利用氧化絮凝协同作用.对胶体性物质和溶解性物质均有较好去除效果。  相似文献   

13.
化学生物絮凝工艺的反应机理初探   总被引:2,自引:2,他引:0  
考察了化学生物絮凝工艺中的Zeta电位、颗粒物粒度分布和溶解性有机物的分子质量分级,并分别与化学强化一级工艺和初沉池进行了对比.研究表明,相同药剂投加量下,化学生物絮凝工艺和化学强化一级工艺的出水Zeta电位值基本相等,化学生物絮凝工艺的回流污泥所携带的化学药剂几乎不影响反应池内颗粒物的稳定状态,其中的生物作用是该工艺对污染物的絮凝效果优于化学强化一级工艺的关键因素.在化学生物絮凝工艺中,投加药剂仅对粒径>10 μm颗粒物和分子质量>6 ku溶解性有机物有较好的去除效果,而生物絮凝作用不但可以促进对大粒径颗粒物和大分子质量溶解性有机物的去除,而且对小粒径颗粒物和小分子质量溶解性有机物也有较好的去除,其出水中粒径>3 μm的颗粒物被完全去除,分子质量为2~6 ku 的溶解性有机物的去除率也高达42.5%.  相似文献   

14.
微塑料是一种存在于不同环境介质中的新兴污染物,主要来源于废弃塑料制品,其存在污染范围广、潜在环境污染大的问题.废塑料再生企业生产废水中微塑料浓度远高于其他类型废水,对其生产废水中的微塑料进行处理具有重要的环境意义.模拟废塑料再生过程的生产废水并进行微塑料去除的絮凝沉淀试验,研究絮凝剂投加量、pH、水力快速搅拌条件的单因素和正交试验对废水中微塑料去除率及其各因素作用的影响.结果表明:①当PAC (聚合氯化铝)投加量为10 mL,PAM (聚丙烯酰胺)投加量为7 mL,pH为9,水力快速搅拌条件为100 r/min下维持40 s再200 r/min下维持40 s时,微塑料的总去除率最高,达91%.②PAC投加量是影响微塑料去除效果的主要因素,其次是pH.③微塑料的去除率与其本身的密度有关,密度大的ABS (acrylonitrile butadiene styrene,丙烯腈-丁二烯-苯乙烯)去除率最高,密度小的PE (polyethylene,聚乙烯)去除率最低.④不同粒径区间的微塑料去除率区别较大,粒径小(0.1~0.25 mm)的微塑料去除效果最好.研究显示,通过控制PAC和PAM的投加量、pH和水力搅拌速率等条件,能够有效将废水中的微塑料通过絮凝沉淀的方法去除,从而达到净化含微塑料生产废水的目的.   相似文献   

15.
聚合氯化铁对浊度和腐殖酸的絮凝特性研究   总被引:3,自引:1,他引:2  
采用聚合氯化铁(PFC)絮凝剂在不同pH条件下处理高岭土悬浮液和腐殖酸溶液, 测试了絮凝过程中的Zeta电位、浊度和腐殖酸的去除率变化.结果表明:pH=4时, PFC投加量最小, 剩余浊度最大,投加范围最窄;pH=7时次之;pH=10时由于Fe(Ⅲ)离子的正电荷减弱, 电中和能力不强, 而且同时产生Fe(OH)3(s)的吸附作用使得剩余浊度最低, 投加范围最宽, 但投加量很大;在酸性条件下腐殖酸与Fe(Ⅲ)离子最容易发生络合反应;腐殖酸的存在并没有影响PFC的絮凝效果.  相似文献   

16.
采用给水厂副产物铝污泥代替黏土作为下沉载体,利用壳聚糖改性,将其用于铜绿微囊藻的絮凝去除.结果表明,壳聚糖与铝污泥以1:50的质量比复合改性后除藻效果明显提高:对于藻密度约为4.88×106cells/mL的含藻水,当改性铝污泥最佳投加量为0.25g/L,30min后藻密度和浊度去除率分别达到100%和98.92%,形成的絮体完整紧实,分形维数值为1.719.通过Zeta电位、SEM等表征分析,此过程主要依靠壳聚糖、铝污泥及藻类之间的"电性中和"与"吸附架桥"等的作用,混凝絮凝过程快速高效且投加量小,最佳环境pH值介于7~9.5,外加NaCl、CaCl2在离子强度较低情况下基本不影响絮凝沉淀过程.加之铝污泥对水体中的磷具有良好的吸附作用,因此壳聚糖改性铝污泥对淡水水体中铜绿微囊藻的去除及生长抑制具有良好的效果,实现了"以废治污".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号