首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
目前,关于不同盐含量及外源CH_4浓度对盐碱土壤CH_4吸收的影响机制尚不清楚.因此,本研究通过室内培养实验,设定大气外源CH_4浓度((2.5±0.1)μL·L-1)和高外源CH_4浓度((6451.6±2.9)μL·L-1),并调节盐碱土壤盐含量,探究不同盐碱程度土壤CH_4吸收潜力的变化趋势.结果表明,两种外源CH_4浓度条件下,无外源盐添加的不同盐碱程度土壤SA1(轻度盐化土壤)、SB1(强度盐化土壤)、SC1(盐土)均表现为随盐碱程度增加,CH_4累积吸收量降低的趋势,即SA1SB1SC1;不同外源CH_4浓度下,CH_4累积吸收量表现为:高外源CH_4浓度(4.10×104μg·kg~(-1))远远大于大气外源CH_4浓度(6.85μg·kg~(-1)).此外,通过实时荧光定量PCR技术检测与计算得到不同盐碱程度土壤甲烷氧化菌丰度、甲烷氧化菌比活性.3种不同盐碱程度条件下,随着盐含量增加,土壤甲烷氧化菌比活性降低,CH_4累积吸收量亦降低,盐含量较高的土壤(SB1、SC1)加入外源盐后,会明显降低CH_4吸收.因此,两种外源CH_4浓度条件下,不同盐碱程度土壤甲烷氧化菌比活性越高,CH_4累积吸收量越大;盐碱土壤甲烷氧化菌比活性变化量越大,CH_4累积吸收变化量越高.说明在两种不同外源CH_4浓度下,土壤甲烷氧化菌比活性是不同盐碱程度土壤CH_4吸收潜力的根本原因.  相似文献   

2.
选取了湖泊底泥、矿化垃圾、覆盖土和好氧污泥4种填埋场周边易得基质为分离源,采用驯化、传代培养、甲烷氧化能力及适应性等方法进行了适合于填埋场覆盖层应用的甲烷氧化菌的筛选研究.结果表明,从好氧污泥中分离得到的甲烷氧化菌较其它分离源得到的甲烷氧化菌具有更高的甲烷氧化活性(2461.29μg·h-1·g-1,以每g干污泥每小时氧化的CH4量(μg)计,下同)和甲烷氧化速率增幅(1045.56μg·h-1·g-1,以每g干污泥每小时氧化的CH4量(μg)计,下同),接种后能显著提高覆盖材料的甲烷氧化能力(p0.05),且不受CH4浓度的抑制.源自好氧污泥的甲烷氧化菌具有生长迟滞期短、生长速率高等特点,对填埋场的甲烷削减更具适应性,有利于工程扩大应用.  相似文献   

3.
硫酸根对有机废水厌氧生物处理的影响   总被引:12,自引:2,他引:10  
刘燕 《环境科学》1992,13(5):50-52,24
利用连续流上流式厌氧污泥床在控制和不控制H_2S浓度两种情况下,考察SO_4~(2-)对有机物厌氧生物处理的影响。试验表明,硫酸根本身对厌氧处理没有毒害作用,它对厌氧处理过程的破坏主要是其还原产物H_2S造成的。在用Fe~(2+)控制H_2S的情况下,硫酸根的存在和浓度大小对出水TOC、TOC去除率、产气量、气化率无不利影响,但会使气体中甲烷含量及甲烷产率逐渐减小而二氧化碳含量及二氧化碳产率逐渐增大,  相似文献   

4.
甲烷胁迫下不同填埋场覆盖土的氧化活性及其菌群结构   总被引:5,自引:2,他引:3  
何若  姜晨竞  王静  高青军  沈东升 《环境科学》2008,29(12):3574-3579
对比研究了常规填埋场覆盖材料(粘土)和甲烷胁迫下垃圾生物处理后的材料(垃圾土)的甲烷氧化活性及其菌群结构.结果表明,粘土由于持水能力弱,其含水量较低,随着环境温度、降水等条件的变化,极易结块,从而影响其中甲烷氧化菌的生长;而垃圾土富含有机物,持水力强,空隙率高,有利于甲烷氧化菌的生长和繁殖.暴露于甲烷气流120 d后,垃圾土柱中下层土壤的甲烷氧化潜力达到了11.25~13.48 μmol/(g·h),是相应粘土层甲烷氧化潜力的10.4~24.5倍.土柱上层土壤由于水分蒸发、变干,抑制了其甲烷氧化活性.试验结束时,垃圾土柱甲烷氧化去除率达到了48.3%,是粘土柱的5~6倍.甲烷氧化菌TypeⅠ和TypeⅡ的生物标记物 PLFAs 16:1ω8c和18:1ω8c分析表明,土样的PLFA18:1ω8c含量与其甲烷氧化潜力具有很好的线性相关性.  相似文献   

5.
利用静态顶空法在2009年7月测定了九龙江河口表层水体和沉积物孔隙水中甲烷浓度以及相关的环境参数,并对甲烷浓度分布特征和控制因素进行了相关的分析.结果显示56个河口表层水的甲烷浓度在10.7~456.7 nmol.L-1之间,饱和度远超过大气平衡甲烷浓度,由河口上端向中下端逐渐减小.4个站位(B1、B2、B3和B4站位)孔隙水中平均甲烷浓度(分别为2 212、447、28和5μmol.L-1)从河口上端向下端快速减小,与水体甲烷浓度水平变化趋势基本一致.B1~B4站位孔隙水中硫酸盐的浓度依次增大,其平均值分别为0.13、0.64、5.3和16.3 mmol.L-1.九龙江河口表层水和孔隙水中甲烷浓度变化趋势,表明河口上端沉积物中产甲烷菌降解有机质产生甲烷,并以扩散的形式通过沉积物-水界面进入上部水体,导致河口上端甲烷浓度增加;而在河口下端海相区随着孔隙水中硫酸盐浓度增加,沉积物中产甲烷过程逐渐受到硫酸盐还原过程的抑制,河口下端孔隙水和表层水甲烷浓度相应降低.B2和B3站位孔隙水中甲烷浓度随着深度增加分别由43和10μmol.L-1增加至1 051和57μmol.L-1,结合总有机碳(TOC)和硫酸盐在沉积柱剖面上的变化趋势,表明大量甲烷在沉积物硫酸盐-甲烷过渡带中被厌氧氧化,这进一步抑制了沉积物中甲烷的释放强度.九龙江河口沉积物中甲烷的产生过程除有机质以外还受到孔隙水中硫酸盐浓度的控制,而水体甲烷主要来源于河口上端盐度相对较低且富有机质的红树林潮间带湿地的释放.  相似文献   

6.
李海玲  岳波  黄启飞  苏毅  何洁 《环境工程》2014,32(11):118-122
分别采用厌氧瓶培养方法和荧光定量PCR技术定量测试了6种典型填埋场覆盖材料的甲烷氧化能力和甲烷氧化菌数量,并分析了典型覆盖材料甲烷氧化能力与甲烷氧化菌含量及物料特性的相关关系。结果表明:厌氧填埋陈腐垃圾、准好氧填埋陈腐垃圾和老覆土的甲烷氧化速率约高于粪便堆肥和垃圾堆肥1个数量级,约高于新覆土2个数量级;厌氧和准好氧填埋陈腐垃圾的甲烷氧化菌含量约高于老覆土和粪便堆肥1个数量级,约高于垃圾堆肥和新覆土2个数量级。覆盖材料的甲烷氧化菌数、甲烷氧化速率与物料填埋或驯化时间呈极显著正相关(p<0.01);甲烷氧化菌数与覆盖材料的甲烷氧化速率、含水率、总氮呈显著性正相关(p<0.05);覆盖材料的甲烷氧化速率与其理化性质之间无明显相关性,而是与覆盖材料本身的甲烷氧化菌含量显著相关。  相似文献   

7.
利用甲硫醚(DMS)降解菌Alcaligenes sp.SY1和丙硫醇(PT)降解菌Pseudomonas putida.S-1强化生物滴滤塔(BTF)处理DMS和PT的混合废气,研究了其挂膜启动及稳定运行阶段的降解性能,并考察了该系统同时去除H2S的能力.结果表明,BTF在DMS和PT进口浓度均为50 mg·m-3,EBRT为30 s的条件下,运行11 d即可完成挂膜启动,填料上的生物量明显增加,DMS、PT的去除率分别可达到90%和100%.系统稳定运行时,DMS和PT的最大去除负荷分别为8.7 g·(m~3·h)~(-1)和12.4 g·(m~3·h)~(-1),PT的去除效果更佳.DMS和PT混合废气在降解过程中,PT对DMS的降解有较明显的抑制作用,当PT进气浓度大于51 mg·m-3时,DMS的去除效率下降.BTF还能同时有效去除H2S,当混合废气中H2S浓度达到230 mg·m-3时,H2S去除率仍能高达98%,但是115 mg·m-3以上的H2S会对DMS的降解产生不利影响.  相似文献   

8.
矿化垃圾中的甲烷氧化-反硝化耦合特性研究   总被引:2,自引:0,他引:2  
设计全因素实验研究了填埋龄10~12年的矿化垃圾中的甲烷氧化反硝化耦合特性.结果表明,每g矿化垃圾中甲烷氧化菌、反硝化细菌可达109个数量级,适合作为甲烷氧化-反硝化耦合反应介质.CH4、O2和NO3--N浓度对CH4去除有明显影响(p<0.01),其大小顺序为CH4>O2> NO3-N,且3种因素具有显著的交互作用(P<0.01).NO3--N对甲烷氧化的抑制或者促进作用主要与环境中的O2浓度和C/O比有关.相对较低的CH4初始浓度和较低的C/O、C/N比有利于甲烷氧化和反硝化作用耦合,而且反应产物中N2O含量较低.当CH4、O2浓度分别为10%,20%时,甲烷去除率能达到97.7%,产生的N2含量为11.5%以上,且N2O的产生量低于0.2%.  相似文献   

9.
垃圾填埋场覆土层Ⅱ型甲烷氧化菌的群落结构   总被引:1,自引:0,他引:1       下载免费PDF全文
采用基于16S rDNA 的变性凝胶梯度电泳(DGGE)技术研究了生活垃圾卫生填埋场和生物反应器填埋场覆土中Ⅱ型甲烷氧化菌群落结构,比较了不同填埋操作方式对Ⅱ型甲烷氧化菌的影响.结果表明,覆土铺有HDPE 膜、无填埋气体渗入的填埋覆土中未发现Ⅱ型甲烷氧化菌;而有填埋气体渗入时,进行渗滤液亚表面灌溉的生物反应器填埋场,无论是否同时进行层内回灌,其覆土中均检测到甲烷孢囊菌(Methylocystis).卫生填埋场填埋龄长达5a 的填埋覆土中发现了甲基弯菌(Methylosinus),填埋龄较低的填埋场覆土中未发现II 型甲烷氧化菌.渗滤液亚表面灌溉及长时间填埋气体驯化能促进Ⅱ型甲烷氧化菌的生长.有机质等营养物质丰富而NH4+-N浓度较低的填埋覆土有利于Ⅱ型甲烷氧化菌的生长.  相似文献   

10.
梅娟  赵由才 《环境工程》2014,32(9):65-69
甲烷氧化菌菌液可用来制备高甲烷氧化率的填埋场覆盖材料。分析了渗滤液预处理对甲烷氧化菌培养的影响,优化了渗滤液作基质培养甲烷氧化菌的工艺。结果表明:补充N、P能改善培养效果,使培养液的最高甲烷氧化率提高30%以上,稀释效果不明显。甲烷氧化会降低渗滤液中金属元素的浓度,Mn、Fe和Cu等元素含量过低可能成为老龄渗滤液甲烷氧化菌培养的限制因素。  相似文献   

11.
水稻土中胱氨酸分解产生含硫气体的研究   总被引:1,自引:1,他引:0  
测定在室内培养情况下南京水稻土中挥发性含硫气体的释放.结果表明,该土壤中产生H2S、羰基硫(COS)和二甲基硫(MDS)气体.当土壤中加入胱氨酸后,检测到甲硫醇(CH3SH)、二硫化碳(CS2)、COS、H2S和DMS气体.除DMS之外,这些气体的释放量随胱氨酸添加量增加而增加.据此推测,水稻土中胱氨酸的分解可能是CH3SH、CS2、COS、H2S等4种气体产生释放的来源之一.在厌氧条件(充氮淹水)下检测到的含硫气体低于好氧条件(普通大气淹水).光照、pH值、土壤含水量等对含硫气体的释放量均有影响  相似文献   

12.
水稻土中硫酸二乙酯分解产生含硫气体的研究   总被引:1,自引:0,他引:1  
为了探讨水稻土中含硫气体产生和释放的途径,在室内培养条件下,测定了南京水稻土中含硫气体的释放。结果从该淹水土壤中测出3种含硫气体;硫化氢(H2S),羰基硫(COS)和二甲基硫(DMS)气体。当土壤中加入硫酸二乙酯后,不仅上述3种气体的释放量增加了,而且还明显测出甲硫醇(CH3SH)和二硫化碳(CS2)。据此推测,水稻土中硫酸二乙酯的分解可能是CH3SH、CS2、COS、H2S、DMS5种气体产生释放的来源之一。在好氧条件(普通大气)下:(1)H2S和COS的释放量低于厌氧条件(充氮)。(2)CS2和CH3SH的释放量高于厌氧条件。(3)DMS的释放量不受空气中氧气含量的影响。分析了培养前后土壤pH和Eh的变化和影响。  相似文献   

13.
污水处理厂活性污泥中甲烷袋状菌的分离与鉴定   总被引:2,自引:0,他引:2  
利用亭盖特厌氧操作技术,从石家庄污水处理厂活性污泥中分离出一株产甲烷古菌QDW.该菌株为不规则球形,直径1-2μm,不产芽孢、革兰氏阴性、不运动、极端严格厌氧.最适生长温度为37℃,最适pH为7.0~7.5,最适盐浓度<0.1 mol/L,以甲酸钠、乙酸钠、乙二醇、H2/CO2为底物产甲烷,不能利用甲醇、丙二醇和甲基胺...  相似文献   

14.
污水处理厂消化沼气脱硫(H_2S)实验   总被引:1,自引:0,他引:1  
污泥消化池每天产生大量的沼气,主要成分为甲烷。消化沼气是一种热值很高的可燃性气体,可用于驱动发电机发电。沼气中的H2S对设备的腐蚀性严重影响了有效的能源利用。除去沼气中含有的H2S可使发电机免遭腐蚀,还可以控制SO2的排放。本论文通过对PDS法应用于某污水处理厂消化沼气脱硫的研究与试验,证明了该方法的有效性及可行性。脱硫效率高达90%以上,平均脱硫效率为95%。脱硫后消化沼气中H2S的浓度均远远低于发动机对燃气中要求的H2S的浓度不得高于1150mgm3的标准,对下一步的工程设计及工艺改进具有指导性的意义。  相似文献   

15.
二甲基硫(dimethyl sulfide,DMS)海气交换对全球气候和环境变化有重要贡献。本文利用已发表的2005-2017年文献数据,结合ERA-interim(European Centre for Medium-Range Weather Forecasts Interim Re-Analysis)风速数据,估算了黄、东海DMS海气通量,并分析了其季节变化和空间差异。结果表明:南黄海和东海DMS年平均海气通量分别为(8.63±4.90)μmol/(m2·d)和(12.77±8.42)μmol/(m2·d),除秋季外,东海海气通量高于南黄海;DMS海气通量季节变化显著,夏季最大,冬季最小,南黄海秋季高于春季,东海春季高于秋季。基于方差分解,本文讨论了各因子方差对DMS海气通量方差的贡献,在南黄海,春季表层DMS浓度和交换速率均对海气通量有主要影响,夏季和冬季交换速率对海气通量影响较大;在东海,春季海气通量受到交换速率和DMS浓度交互作用的影响较大,夏季海气通量主要由DMS浓度控制,秋季和冬季交换速率对海气通量的影响较大。南黄海和东海占全球海洋面积的0.30%,其DMS排放量为0.1461 TgS/a,占全球海洋DMS排放量的0.52%。  相似文献   

16.
于2017年3~4月首次对东海表层海水及大气中3种主要挥发性有机硫化物(VSCs)即羰基硫(COS)、二甲基硫(DMS)、二硫化碳(CS2)的浓度分布进行观测,研究了海水中3种主要VSCs的相关性,并估算了3种VSCs的海-气通量.结果表明,东海表层海水COS、DMS和CS2的浓度平均值分别为(1.0±0.4)、(6.8±6.8)和(0.6±0.4)nmol/L,总体来看东海表层水中3种VSCs呈现出近岸高、远海低的分布趋势.相关性分析表明DMS与Chl-a存在显著相关性,表明浮游植物生物量是影响东海海水中DMS分布的主要因素;同时DMS与CS2存在着显著的相关性,表明这2种物质的来源有着一定的共性.大气中COS、DMS和CS2的浓度平均值分别为:(294.7±158.8)、(22.7±18.0)和(108.8±88.1)×10-12,分布呈现出近岸高,远海低的趋势,主要受到人为活动等陆源输入的影响.此外春季东海COS、DMS和CS2的海-气通量平均值分别为(4.0±3.4)、(25.8±33.8)和(2.6±2.9)μmol/(m2⋅d),表明春季东海是大气中3种VSCs重要的源.  相似文献   

17.
水稻土中甲硫氨酸分解释放挥发性含硫气体的影响因素   总被引:3,自引:1,他引:2  
为了探讨水稻土中含硫气体产生和释放的途径 ,在室内培养条件下 ,测定了南京水稻土中含硫气体的释放 .从该淹水土壤中测出 3种含硫气体 ;羰基硫 (COS)、二甲基硫 (DMS)和少量硫化氢 (H2S)气体 .当土壤中加入甲硫氨酸后 ,DMS气体的释放量有了明显增加 ,此外还有大量甲硫醇 (CH3SH)和二甲基二硫 (DMDS)气体测出 .而 COS在好氧条件 (普通大气淹水 )下的释放量明显增加 ,在厌氧条件 (充氮淹水 )下的释放量变化不明显 ;只有 H2S的释放量几乎没变 .这些结果表明 ,甲硫氨酸的分解可能是 COS、DMS、CH3SH和 DMDS的产生源之一 ,且释放含硫气体的种类明显不同于胱氨酸和半胱氨酸 .在好氧 (普通大气 )条件下 ,DMDS和 CH3SH的释放量低于厌氧情况 (充氮气 )下的释放量 ,DMS则高于厌氧条件下的释放量 .这表明 ,水稻土中甲硫氨酸分解产生 DMDS和 CH3SH需较强的还原条件 ,产生这 2种气体的微生物需要严格的厌氧条件 .产生 DMS的微生物则比前者需要高一些的含氧量 .土壤 pH值和含水量及光照对甲硫氨酸分解释放含硫气体均有影响 .各含硫气体在持水率 50%、普通大气、光照条件下的释放量明显高于无光照条件下的释放量 .  相似文献   

18.
土壤中发生的挥发性有机硫气体的研究   总被引:11,自引:0,他引:11  
测定了张北、封丘、鹰潭、吴县、长沙、湛江等地旱地土壤和水稻土在室内培养情况下挥性有机硫气体的释放。结果表明,这些土壤中产生硫化氢、氧硫化碳、甲基硫醇、二甲基硫、二硫化碳和二甲基二硫等含硫气体。水稻土中产生的有机硫气体高于旱地土壤,同时施用有机肥和化肥后,土壤中发生的有机硫气体高于仅施用化肥,在厌氧条件下检测到的有机硫气体高旱地土壤、同时施用有机肥和化肥后,土壤中发赡有机硫气体高于仅施用化肥。在厌氧  相似文献   

19.
厦门近海海域海水二甲基硫排放通量的研究   总被引:7,自引:0,他引:7  
大气环境;环境质量评价;集对分析;联系度;不确定性;   相似文献   

20.
不同底物种类对厌氧发酵产氢的影响   总被引:1,自引:1,他引:0  
在批式培养试验中以人工配置的废水为原料,以厌氧消化污泥作为天然产氢菌源,通过厌氧生物发酵制备生物氢气,研究了不同底物葡萄糖、蔗糖、麦芽糖、木糖、乳糖对产氢能力的影响,以及生物制氢发酵过程中液相组成的变化,并对产氢动力学和细菌生长动力学进行了分析.结果表明,5种底物中最佳的底物是葡萄糖,氢气含量、累积产氢量和氢气产量最高可达到49.52%、67.21 L/mol、3.23 mol/mol.发酵产氢代谢产物以丁酸和乙酸为主,乙酸的含量占到26.76%~40.49%,丁酸的含量占到37.60%-58.07%.并含有部分丙酸和乙醇,属于丁酸型发酵.丁酸/乙酸比值可作为衡量氢气产生效率的一个指标,比值越大产氢量越高.实验中氧化还原电位均在-300 mV以下,以厌氧为主.Gompertz模型能够很好地拟合其产氢过程和产氢菌生长过程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号