首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
氧化亚铁硫杆菌(A.ferrooxidans)生物氧化Fe2+与石灰中和相耦合是一种具有发展潜力的酸性矿山废水处理工艺.在Fe2+生物氧化段提高Fe2+氧化与总Fe沉淀效率是调控此类废水高效处理的关键步骤,且该阶段常伴有黄铁矾等次生铁矿物的合成.本研究通过摇瓶实验,在p H约2.50的K2SO4(8 mmol·L-1)-Fe SO4(160 mmol·L-1)-H2O酸性硫酸盐体系中按约3×105cells·m L-1的浓度接入A.ferrooxidans,在15℃和30℃两个温度水平下,探究附着微生物的黄钾铁矾回流对体系Fe2+生物氧化与总Fe沉淀行为的影响.结果表明,15℃条件下培养至144h,体系p H变化至2.40,Fe2+氧化率和总Fe沉淀率分别仅为46.7%和12.2%.当体系接入附着微生物黄钾铁矾10 g·L-1时,体系Fe2+在132h即可完全氧化.144 h时,体系p H降低至2.24,总铁沉淀率为25.3%.30℃条件下体系Fe2+在72 h完全氧化,p H变化至1.89,总Fe沉淀率为34.3%.当体系接入回流的黄钾铁矾10 g·L-1时,体系Fe2+完全氧化时间缩短至60 h,p H降低至1.85,总Fe沉淀率为37.3%.本研究不同处理体系所得次生铁矿物均为黄钾铁矾,附着微生物黄铁矾回流对15℃环境所得黄钾铁矾形貌影响不大,均为粘附紧密、表面光滑的晶体形貌.而30℃环境中,附着微生物黄铁矾回流却使得原本较为分散、晶型棱角明显的黄铁矾晶体结构变得紧密而光滑.本研究结果可为酸性矿山废水处理提供一定的参数支撑.  相似文献   

2.
通过摇瓶培养试验,在富铁酸性硫酸盐环境中,探析0、50、100、200或400mg/L Ca2+加入对嗜酸性氧化亚铁硫杆菌(A. ferrooxidans)生物合成次生铁矿物过程的影响.分析了体系pH值、氧化还原电位(ORP)、Fe2+氧化率、总Fe沉淀率以及次生铁矿物矿相等相关指标的变化情况.结果表明,0~24h培养过程中,各体系pH值、ORP、Fe2+氧化率及总Fe沉淀率变化幅度基本一致.24~108h培养过程中,体系中Ca2+加入量越大,Fe2+氧化越迅速,相应总Fe沉淀率相对较高.400mg/L Ca2+的加入使得体系Fe2+在72h氧化完全,总Fe沉淀率在108h达到39.1%.0、50、100或200mg/L Ca2+ 加入的体系在24~84h培养过程中,体系Fe2+氧化速率随着Ca2+加入量逐渐增加而依次升高,并在84h Fe2+氧化完全,且在108h,相应体系总Fe沉淀率分别为27.0%、29.7%、33.9%或36.9%.不同体系所得次生铁矿物均为施氏矿物与黄铁矾的混合物.本研究结果对明晰富铁酸性硫酸盐环境钙离子调控生物成因次生铁矿物合成的影响机理有一定指导意义.  相似文献   

3.
培养转速与镁离子对生物合成次生铁矿物的影响研究   总被引:2,自引:2,他引:0  
探析培养转速与镁离子浓度对氧化亚铁硫杆菌生物合成次生铁矿物的影响对酸性矿山废水(AMD)治理具有一定的工程指导意义.本研究通过摇瓶实验,研究了Mg2+浓度分别为48与4.8 mg·L-1,其它元素组成与富含Fe与SO2-4的9K液体培养基一致的体系在180 r·min-1与100 r·min-1转速条件下氧化亚铁硫杆菌催化合成次生铁矿物过程.考察了不同次生铁矿物合成体系pH、Fe2+氧化率、总Fe沉淀率及次生铁矿物矿相等相关指标.研究结果表明,在180 r·min-1的培养条件下,Mg2+浓度分别为4.8与48 mg·L-1两体系培养48 h后,pH从原始的2.50分别降低至2.07与2.12,Fe2+均可在48 h内实现完全氧化.Fe2+完全氧化时,Mg2+浓度为4.8 mg·L-1体系总Fe沉淀率为37.4%,合成的次生铁矿物均匀分散于溶液中,而Mg2+浓度为48 mg·L-1体系中,总铁沉淀率仅为31.7%,且70%的矿物牢固粘附于摇瓶底部.培养转速为100 r·min-1时,Mg2+浓度分别为4.8与48 mg·L-1两体系经过72 h培养后,pH均从原始的2.50降低至2.21与2.17.Fe2+需要72 h才能被完全氧化,两体系总Fe沉淀率分别仅为21.3%与23.0%,产生的次生铁矿物几乎全部牢固粘附于摇瓶底部.本研究所有体系产生的次生铁矿物均为黄铁矾与施氏矿物的混合物.研究结果可为生物合成次生铁矿物工艺的优化及其在酸性矿山废水治理领域的有效应用提供必要的参数支撑.  相似文献   

4.
酸性矿山废水(AMD)具有酸度高并含有大量可溶性Fe、硫酸根及重(类)金属的特点,采用生物矿化法促使AMD中Fe向羟基硫酸铁次生矿物转变,对AMD后期石灰中和减少氢氧化铁和废石膏的产生,提高中和效率具有实际意义.本研究模拟AMD,考察了初始pH、Fe~(2+)浓度、Fe/Na摩尔比对嗜酸性氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)体系中Fe~(2+)氧化率、总Fe沉淀率、次生铁矿物矿相的影响.结果表明,高浓度Na~+会抑制A.ferrooxidans的氧化能力,当Na~+浓度在A.ferrooxidans耐受范围内时,其不影响Fe~(2+)氧化及总Fe沉淀去除效果,表现在160、80、20 mmol·L~(-1)的Fe~(2+)分别在72、48、48 h内被完全氧化,培养至终点时平均总Fe沉淀率分别为20.04%、16.43%、0.99%.此外,在Fe~(2+)浓度为160mmol·L~(-1)体系中,当Fe/Na摩尔比为1.0、2.0时,pH为2.0~2.6时获得次生铁矿物均为纯净施氏矿物.而当Fe/Na摩尔比降至0.5时,次生铁矿物的合成途径开始向黄钠铁矾转移,且其特征衍射峰随着Na~+浓度提高而愈加显著.本研究结果可为生物合成次生铁矿物工艺的优化及其在AMD治理领域的有效应用提供必要的参数支撑.  相似文献   

5.
通过摇瓶实验,在Mg2+分别为48,4.8mg/L,其他元素组成与9K液体培养基一致的体系中,采用氧化亚铁硫杆菌A.ferrooxidans催化合成次生铁矿物.考察了Mg2+含量对生物合成次生铁矿物体系pH值、氧化还原电位(ORP)、Fe2+氧化率、总Fe沉淀率、次生铁矿物矿相及矿物晶体尺寸的影响.结果表明,经过48h培养,Mg2+浓度为48,4.8mg/L生物成矿体系pH值分别从原来的2.50降低至2.30,2.19,ORP分别从初始259mV增加至269mV,276mV.两体系Fe2+氧化率培养至第48h均达到100%,然而两体系总Fe沉淀率及矿物形态及却不尽相同.Mg2+浓度为48mg/L生物成矿体系,总Fe沉淀率为23.7%,次生矿物紧密粘附于三角瓶底部.而Mg2+浓度为4.8mg/L生物成矿体系,总Fe沉淀率达到32.2%,次生矿物却均匀分散于溶液中.两体系合成次生铁矿物均为黄铁矾与施氏矿物共存的混合物,Mg2+含量4.8mg/L体系合成黄铁矾单个晶体长度(~1.60μm)约为Mg2+含量48mg/L体系的1.2倍.  相似文献   

6.
通过摇瓶实验,在Mg2+分别为48,4.8mg/L,其他元素组成与9K液体培养基一致的体系中,采用氧化亚铁硫杆菌A. ferrooxidans催化合成次生铁矿物.考察了Mg2+含量对生物合成次生铁矿物体系pH值、氧化还原电位(ORP)、Fe2+氧化率、总Fe沉淀率、次生铁矿物矿相及矿物晶体尺寸的影响.结果表明,经过48h培养,Mg2+浓度为48,4.8mg/L生物成矿体系pH值分别从原来的2.50降低至2.30,2.19,ORP分别从初始259mV增加至269mV,276mV.两体系Fe2+氧化率培养至第48h均达到100%,然而两体系总Fe沉淀率及矿物形态及却不尽相同.Mg2+浓度为48mg/L生物成矿体系,总Fe沉淀率为23.7%,次生矿物紧密粘附于三角瓶底部.而Mg2+浓度为4.8mg/L生物成矿体系,总Fe沉淀率达到32.2%,次生矿物却均匀分散于溶液中.两体系合成次生铁矿物均为黄铁矾与施氏矿物共存的混合物,Mg2+含量4.8mg/L体系合成黄铁矾单个晶体长度(~1.60μm)约为Mg2+含量48mg/L体系的1.2倍.  相似文献   

7.
为揭示富里酸对嗜酸性氧化亚铁硫杆菌活性和生物合成次生铁矿物的影响,进而为酸性矿山废水治理提供理论依据,采用摇瓶试验,分析了pH、氧化还原电位(ORP)、Fe2+氧化率、Fe2+氧化速率、总Fe沉淀率以及次生矿物矿相等相关指标的变化情况.结果表明,在含9K液体培养基以及K+浓度均为53.3 mmol·L-1体系中,pH与ORP变化呈相反的趋势;富里酸浓度低于0.4 g·L-1时,有利于次生铁矿物的生成,表明低浓度的富里酸能够提高A. ferrooxidans的活性,富里酸浓度高于0.6 g·L-1时,Fe2+氧化率、总铁沉淀率低于对照组,表明高浓度的富里酸对A. ferrooxidans产生显著的毒害作用以及降低总Fe沉淀率.随着富里酸浓度的提高,次生铁矿物的主衍射峰位置以及所含官能团与对照组相比无明显区别,各体系产生的次生铁矿物为纯净的黄钾铁矾;进行无9K培养基实验:未添加K+时,FA-0.4 g·L-...  相似文献   

8.
探究硫铁矿生物氧化过程的影响因素有利于揭示酸性矿山废水形成规律.本研究采用摇瓶试验,探究了氧化亚铁硫杆菌Acidithiobacillus ferrooxidans LX5(A.ferrooxidans LX5)密度对硫铁矿生物氧化的影响.同时,在菌密度为1.40×107cells·m L-1的环境中,研究了微生物营养(无铁改进型9K液体培养基)供给对硫铁矿生物氧化的影响.结果表明,A.ferrooxidans LX5及其营养成分的引入显著加速了硫铁矿生物氧化体系H+的释放,0.70×107~2.10×107cells·m L-1A.ferrooxidans LX5的引入,可使得H+释放量较无菌对照提高1.51~3.31倍.半量浓度和全量浓度无铁改进型9K液体培养基的加入,可使菌密度为1.40×107cells·m L-1硫铁矿氧化体系的H+释放量提高3.24与2.75倍.相对于A.ferrooxidans LX5密度为0.70×107cells·m L-1的体系,1.40×107cells·m L-1或2.10×107cells·m L-1A.ferrooxidans LX5的引入明显提高硫铁矿氧化体系总Fe离子与SO2-4的释放效率,且71.9%~88.3%的总Fe离子主要以Fe2+存在.微生物营养供给使得总Fe离子与SO2-4的释放效率加速显著,而总Fe离子几乎全部以Fe3+存在.当菌密度大于1.40×107cells·m L-1时,体系生物氧化后所得硫铁矿表面存在明显的侵蚀坑.相对于半量浓度改进型9K培养基养分供给,全量改进型9K液体培养基的引入由于体系次生铁矿物覆盖硫铁矿明显而抑制了总Fe离子与SO2-4的释放.硫铁矿氧化所得酸性废水经Ca O中和至pH约为7.00,总Fe近乎全部去除,而SO2-4去除率相对较低(26.7%~73.9%).本研究所得结果对明晰酸性矿山废水形成规律具有一定的指导意义.  相似文献   

9.
氧化亚铁硫杆菌(A.ferrooxidans)介导的生物矿化方法促使可溶性Fe向次生铁矿物转变对酸性矿山废水(AMD)治理具有重要意义.化能自养菌A.ferrooxidans易受水流冲击而流失,常采用固定化方式来提高菌密度,从而保证较高的Fe2+氧化和成矿速率以满足实际需要.本研究在相同初始条件下(pH=2.30、Fe2+浓度4.48g/L、A.ferrooxidans密度8×106cells/mL)生物合成固定有A.ferrooxidans的施氏矿物、黄钾铁矾和黄铵铁矾,比较矿物溶解前(固定态)和溶解后(游离态)A.ferrooxidans的Fe2+氧化性能,并分析各矿物对A.ferrooxidans的固定能力.结果表明,生物成因次生铁矿物干重排序为施氏矿物(0.24g) < 黄铵铁矾(0.35g) < 黄钾铁矾(0.67g),但矿物固定A.ferrooxidans的能力却依次为施氏矿物 > 黄铵铁矾 > 黄钾铁矾.以游离态A.ferrooxidans的Fe2+氧化速率作为参比,推算出本研究所得施氏矿物、黄铵铁矾、黄钾铁矾固定A.ferrooxidans的有效生物量依次为5.33×107~ 5.33×108,5.72×106~5.72×107,6.35×106cells/g(干基).次生铁矿物载体有效生物量不仅直接影响AMD体系中Fe2+氧化速度,也间接决定了总Fe的矿化去除效果.  相似文献   

10.
嗜酸性氧化亚铁硫杆菌(A.ferrooxidans)促进次生铁矿物形成的现象在酸性煤矿废水(ACMD)的治理领域具有重要意义.本研究探索了A. ferrooxidans接种密度在酸性硫酸盐环境(9K培养基)中对Fe2+氧化率、总Fe沉淀率及矿物产生量的影响,同时考察了矿物合成体系矿相的变化情况.结果表明,当体系A. ferrooxidans接种密度为0.27×106~5.40×107 cells·mL-1时,溶液中Fe2+需60~12 h氧化完全.培养至60 h,上述体系总Fe沉淀率分别达到10.7%~35.9%.不同接种体系Fe2+同时氧化完全时,沉淀单位质量Fe而转化的次生铁矿物量随着接种密度的增加而增大.例如,A. ferrooxidans接种密度分别为1.35×106、2.70×106、8.10×106和1.62×107 cells·mL-1的处理在Fe2+同时完全氧化时刻,Fe沉淀率分别为17.6%、20.0%、24.1% 和26.5%,且沉淀1 g Fe转化的次生铁矿物量分别为2.04、2.10、2.17与2.27 g.结晶度较差的施氏矿物是次生铁矿物合成初期产生的唯一矿相,Fe2+完全氧化时,矿物相为施氏矿物与结晶度好的黄铁矾矿物的混合物.  相似文献   

11.
采用氧化亚铁硫杆菌催化合成铁硫酸盐次生矿物,研究不同L-色氨酸添加浓度对矿物合成体系pH、氧化还原电位(ORP)、Fe2+氧化率、总Fe沉淀率,以及次生矿物产量、化学组成及矿物相的影响.结果表明,随着体系色氨酸浓度的增加,pH降低幅度越小,ORP上升越不明显.色氨酸对铁硫酸盐次生矿物合成的影响依赖于其浓度,当色氨酸浓度低于1.67 g·L-1时,色氨酸对铁硫酸盐次生矿物的形成起促进作用,表现为总Fe沉淀率及矿物产量随着色氨酸浓度升高而增加.而当色氨酸浓度升高至6.67 g·L-1时,Fe2+氧化率、总Fe沉淀率和矿物产量远低于对照组,表明高浓度色氨酸会抑制铁硫酸盐次生矿物的形成.次生矿物内Fe/S比介于施氏矿物和黄钾铁矾的理论值之间,表明不同合成体系所得次生矿物均为黄钾铁矾和施氏矿物的混合物.矿物学特征分析表明,随着色氨酸浓度的升高,矿物的合成表现为黄钾铁矾向施氏矿物转移.  相似文献   

12.
利用从高硫煤矸石堆场浸出液中培养驯化获得的氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans,A.f),通过静态实验,探讨添加不同量的碳酸盐岩对酸性硫酸盐体系中Fe2+生物氧化速率及次生铁矿物合成的影响.结果表明:添加10 g和30 g碳酸盐岩不会对体系中pH、氧化还原电位(ORP)和Fe2+生物氧化速率产生明显影响,但总铁(TFe)的去除率可从37%分别提高到55%和62%,矿物生成量也从8.17 g·L-1分别增加到12.03 g·L-1和13.69 g·L-1;同时,体系中合成的次生铁矿物相与不加碳酸盐岩时无明显变化,主要为黄铁矾和施氏矿物的混合物.随着碳酸盐岩添加量增至50、70和90 g时,体系pH快速上升,Fe2+生物氧化速率受到抑制,并产生大量结晶程度较好的硫酸钙,形成的铁矿物主要为纤铁矿或针铁矿.而适量的碳酸盐岩添加可使体系中产生Ca2+和Mg2+,从而影响次生铁矿物的合成.因此,在以碳酸盐岩为反应介质的酸性矿山废水处理工艺设计中,可通过添加A.f菌并控制碳酸盐岩投加量,强化系统中Fe2+生物氧化及次生矿物的合成,从而进一步提高反应系统对TFe的去除效果.  相似文献   

13.
在FeSO4-K2SO4-H2O的嗜酸性氧化亚铁硫杆菌催化氧化体系中,当起始Fe2+浓度分别为20、40、80和160mmol.L-1时,通过设定系列Fe/K摩尔比(3~200)来调控溶液的K+含量,合成得到次生羟基硫酸铁矿物,主要包括施威特曼石、黄钾铁矾以及两者的混合物.结果表明,当起始Fe2+浓度较低,如20mmol.L-1和40mmol.L-1时,72h反应后,不同Fe/K摩尔比处理所得矿物质量很少,最大只有0.38g.而随着Fe2+浓度增大,Fe/K摩尔比例的减小,矿物质量明显增加,例如在Fe2+=160mmo.lL-1、Fe/K=3时,250mL体系中矿物质量达到了4.48g,同时矿物相由结晶度差的施威特曼石逐渐过渡到结晶度好的黄钾铁矾.笔者发现矿物质量与矿物相有非常密切的关系,当产物为晶型黄钾铁矾时,其对应的矿物质量也更多.因此,微生物成因羟基硫酸铁矿物质量在很大程度上取决于起始Fe2+浓度和Fe/K摩尔比,该现象对去除酸性矿山废水中可溶性Fe和SO24-有潜在意义.  相似文献   

14.
探究富铁酸性硫酸盐体系次生铁矿物附着包裹硫杆菌的Fe~(2+)氧化活性,对揭示次生铁矿物调控酸性矿山废水形成过程具有指导意义.本研究首先采用摇瓶实验合成次生铁矿物—施氏矿物,然后将脱水后的0.1、0.2、0.3及0.4 g施氏矿物直接或溶解后加入到pH为2.50的富铁酸性硫酸盐体系(改进型9K液体培养基)中进行Fe~(2+)氧化,分析体系pH、Fe~(2+)氧化率、次生铁矿物产生量等相关指标.研究表明,氧化亚铁硫杆菌在脱水施氏矿物的附着包裹量为2×10~8cells·g~(-1).0.1、0.2、0.3及0.4 g施氏矿物直接加入体系经过108 h培养,pH分别下降至2.28、2.25、2.24及2.22;Fe~(2+)氧化速率随着施氏矿物加入量的增加而增加,且各体系Fe~(2+)氧化率在108 h均达到100%,此时次生铁矿物产生量分别是3.05、3.30、3.61与3.70 g·L~(-1).然而,0.1、0.2、0.3及0.4 g施氏矿物溶解后进入的相应体系经过108 h培养后,pH分别下降至2.19、2.18、2.10及2.02;Fe~(2+)氧化速率随着施氏矿物溶解量的增加而增加,各体系Fe~(2+)氧化率在96 h均达到100%,各体系次生铁矿物在108 h时的产生量分别是6.16、6.44、6.76与7.89 g·L~(-1).可见,施氏矿物对硫杆菌的吸附包裹作用致使体系Fe~(2+)氧化效率降低,次生铁矿物合成量减少,酸化程度减弱.  相似文献   

15.
酸性矿山废水(AMD)具有酸度高并含有大量可溶性Fe、硫酸根及重(类)金属的特点,采用生物矿化方法促使AMD中Fe向羟基硫酸铁次生矿物转变,对AMD后期石灰中和减少氢氧化铁和废石膏的产生,提高中和效率具有实际意义.通过模拟酸性矿山废水,考察了Cl-、NO3-、PO43-3种阴离子对嗜酸性氧化亚铁硫杆菌(A.ferrooxidans)体系中pH值、Fe2+氧化率、总Fe沉淀率、次生铁矿物矿相的影响.结果表明,高浓度阴离子对A.ferrooxidans氧化Fe2+能力具有抑制作用.A.ferrooxidans对阴离子的耐受性依次为PO43- > NO3- > Cl-.阴离子浓度在A.ferrooxidans耐受范围内时,其对Fe2+的生物氧化速率基本没有影响.但高浓度阴离子会通过抑制A.ferrooxidans的氧化活性,从而间接影响Fe3+的水解成矿过程,导致培养终点时总Fe沉淀率降低和次生铁矿物产量减少.受Fe3+供应速率降低的影响,次生铁矿物的合成途径易向施氏矿物转变.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号