首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 261 毫秒
1.
广西工业源大气污染物排放清单及空间分布特征研究   总被引:5,自引:0,他引:5  
大气污染物排放清单是了解区域污染物排放特征的重要资料,而工业源是大气污染的重点排放源.研究根据收集的工业企业活动水平数据,选择合理的计算方法和排放因子,建立了广西2016年工业源大气污染物排放清单.结果表明,2016年广西工业源SO_2、NO_x、CO、PM_(10)、PM_(2.5)、VOCs排放总量分别为20.7×10~4、21.6×10~4、147.5×10~4、48.4×10~4、25.7×10~4、34.7×10~4 t.其中,电厂和非金属矿物制品业对SO_2、NO_x、PM_(2.5)和VOCs的贡献最高.除此之外,黑色金属冶炼是SO_2、NO_x和PM_(2.5)的主要贡献源;有色金属冶炼是PM_(2.5)的主要贡献源;农副食品加工业是VOCs的主要贡献源.根据排放源污染物排放量及地理坐标信息,建立了污染物排放量空间分布特征图.结果显示,广西工业企业SO_2和NO_x排放主要集中在百色、柳州、防城港和贵港市;颗粒物排放主要集中在贵港、柳州和百色市;VOCs排放主要集中在柳州、贵港和崇左市.研究建立的排放源清单结果具有一定的不确定性,建议进一步完善基础研究.  相似文献   

2.
承德市大气污染源排放清单及典型行业对PM2.5的影响   总被引:3,自引:1,他引:2  
陈国磊  周颖  程水源  杨孝文  王晓琦 《环境科学》2016,37(11):4069-4079
以承德市为研究对象,基于拉网式实地调查,获得了该地区2013年各类典型行业污染源详细的活动水平数据,以大气污染物排放清单编制指南为参考,辅以排放因子研究的系统梳理,建立了2013年承德市各行业区县分辨率大气污染源排放清单,并结合人口、路网、土地利用等数据进行了1 km×1 km网格分配.在此基础上建立气象-空气质量模型系统(WRFCAMx),应用颗粒物来源识别技术(PSAT),选取2013年典型季节代表月1、4、7、10月,针对承德市电力、建材、冶金等典型行业对PM_(2.5)的影响进行了定量评估.结果表明,2013年承德市SO_2、NO_x、TSP、PM_(10)、PM_(2.5)、CO、VOCs、NH_3的总排放量分别为81 134、72 556、368 750、119 974、51 152、1 281 371、170 642、81 742 t.工业源是SO_2、NO_x、CO、VOCs的主要排放源,分别占总排放量的89.5%、51.9%、82.5%和45.6%,NO_x的主要排放源还包括道路移动源和非道路移动源,分别占总排放量的26.7%和10.8%;TSP、PM_(10)、PM_(2.5)的主要排放源是无组织扬尘,分别占总排放量的76.7%、65.6%、46.5%;畜禽养殖、化肥施用是NH_3的主要排放源,分别占总排放量的67.1%、15.8%.数值模拟结果表明,无组织扬尘、其他行业、冶金、锅炉行业对环境PM_(2.5)影响较大,浓度贡献分别为23.1%、20.6%、13.3%和11.2%,制定具体控制措施时应得到重点关注.  相似文献   

3.
在建立成都市大气污染物排放清单的基础上,采用源开关敏感性分析法,设置8个排放情景,基于WRF-CMAQ模型模拟分析了2015年1、4、7和10月这4个典型代表月份的大气污染传输和不同行业对成都市PM_(2.5)污染贡献.结果表明成都市PM_(2.5)污染较重,特别是1月达到130μg·m~(-3)以上;浓度的高值集中在中心城区,且与周边城市PM_(2.5)污染连接成片.由于气团比较稳定,大气污染物的区域传输能力较弱,成都市PM_(2.5)污染以本地源的贡献为主,占比为61%.从行业贡献来看,移动源、扬尘源和生活源对成都市PM_(2.5)年均浓度贡献率分别为29%、26%和24%,是影响PM_(2.5)污染的主要污染源,下一步应强化对这3类源的污染控制.  相似文献   

4.
该文基于对金华市大气污染排放源的摸底调查,基础数据收集和分析,结合国内外的研究结果,采用"自下而上"为主的排放系数法,建立了2013年金华市人为源大气污染物排放清单。该清单涉及的污染物包括SO_2、NO_x、CO、PM_(10)、PM_(2.5)、VOC和NH_3。人为污染源种类包括电厂源、工业源、移动源、扬尘源、VOC相关源及其他污染源,农业源,居民生活源等。结果表明,金华市2013年大气污染源SO_2排放总量约为3.83万t,NO_x约为7.75万t、CO约为12.50万t、PM_(10)约为4.10万t,PM_(2.5)约为1.88万t、VOC约为7.66万t、NH_3约为2.63万t。从排放源的分担率来看,工业源是金华市大气污染物的最主要的排放源之一,对SO_2、NO_x、CO、PM_(10)和PM_(2.5)的贡献分别达到了67.31%、34.42%、30.39%、53.02%和50.95%。同样,道路移动源的贡献也不容忽视,对NO_x、CO、PM_(10)和PM_(2.5)的贡献分别达到了42.84%、34.13%、3.31%、6.55%。电厂锅炉、道路扬尘、工业溶剂使用、畜禽养殖对不同污染物分别有着重要贡献。电厂锅炉对SO_2、NO_x、CO的排放量分别贡献了29.06%、17.89%、9.73%。道路扬尘对PM_(10)和PM_(2.5)的贡献分别为25.68%和18.01%。工业溶剂对于VOC的贡献为32.65%。NH_3主要来自畜禽养殖,占了66.57%。该人为源大气污染物排放清单可为当地的污染防控提供重要的基础信息。  相似文献   

5.
结合GIS数据对合肥市大气污染状况的初步数值模拟研究   总被引:1,自引:0,他引:1  
应用WRF-SMOKE-CMAQ模式结合地理信息系统(GIS),数值模拟研究了合肥市大气污染状况.在排放处理过程中,安徽省统计类面源排放采用GIS工具进行空间分配,并收集重点企业排放数据,以点源形式导入数值模型中,驱动多尺度空气质量模式CMAQ模拟合肥2014年12月大气污染现状.结合合肥市环境空气质量站点PM_(2.5)、NO_2日均浓度和小时浓度对比验证表明:1采用GIS数据空间优化获得的统计类排放面源较合理地呈现相关联排放的地理特征.2当前模式系统可以较好地模拟出2014年12月合肥市PM_(2.5)污染物变化特征,尤其是12月20日—26日PM_(2.5)污染累积和消散过程,站点的模拟实测两倍因子在63%~77%之间,合理反映出当月合肥市区PM_(2.5)污染状况.3模式对于NO_2模拟,在部分区域具有较好的模拟效果,但在部分区域模式只能模拟出NO_2大致变化趋势;所有有效站点的比对结果平均偏差为21.92μg·m~(-3),整体存在偏高现象;有40%站点FAC2在73%~88%之间,除个别观测数据异常较多站点外,其他站点FAC2在50%左右,这种差异是由于模式网格分辨率较低、排放源分配及站点选取引起的.  相似文献   

6.
利用WRF-Chem模式对2015年12月21—23日南京一次重霾污染过程进行模拟.基于合理的模拟评估,采用大气传输通量计算法,着重分析了此次霾污染过程中模拟的南京地区PM_(2.5)的传输收支特征,以及周边地区大气污染物传输对南京市PM_(2.5)变化的贡献.结果表明,此次霾污染过程中,本地源与外来源区域传输共同影响着南京市的空气质量.PM_(2.5)的跨区域传输是此次重霾污染发生和消亡的重要因素.在霾污染事件的形成维持阶段,南京地区是作为周边地区PM_(2.5)的接收区,大气污染物主要由南京的西边界输入,大气污染物的外源输入是南京PM_(2.5)污染的主要贡献来源,占南京PM_(2.5)污染的84%.在霾污染事件的消亡阶段,南京地区则是作为周边地区PM_(2.5)的源,大气污染物主要由南京的东边界持续向外输出.  相似文献   

7.
通过收集整理南京市工业源活动水平,采用"自下而上"的方法建立了2014年南京市工业源大气污染物排放清单。清单结果显示,2014年南京市工业源SO_2、NO_x、PM_(2.5)、PM_(10)、CO、VOCs和NH_3的一次排放总量分别为6.70、14.45、4.97、7.06、83.03、14.47和0.07万t。电力生产是SO_2和NO_x的主要排放源,占工业源总排放量的40%以上,钢铁行业是PM_(2.5)、PM_(10)和CO的主要排放源,均占55%以上,VOCs排放主要来自石化化工,贡献了约62.6%的工业源排放。工业重点源空间分布结果显示,南京市重点源排放主要集中于长江沿岸一带的2个园区:南京化学工业园区和南京经济技术开发区。该研究建立的排放清单具有一定的不确定性,建议后续研究加强大气污染物排放系数的研究,进一步完善大气污染物排放清单,为该市大气污染预报预警和污染控制措施的制定提供重要基础数据。  相似文献   

8.
樊啸辰  郎建垒  程水源  王晓琦  吕喆 《环境科学》2018,39(10):4430-4438
大气颗粒物是影响我国大多数城市环境空气质量的首要污染物,近年来随着监测技术的进步和采样设备的改进,相关研究对象逐渐从大粒径的PM_10、PM_(2.5)转移到更小粒径的PM_1上.碳质组分是大气颗粒物的重要组成部分.以北京市为研究区域,选取2016年7月、10月及2017年1月、4月作为4个季节的代表月,对大气环境中的PM_(2.5)和PM_1进行采集,分析了二者的质量浓度和季节变化特征.采用两层嵌套气象-空气质量模型系统(WRF-CMAQ)耦合模型对采样时段进行了模拟,分析观测期间PM_(2.5)和PM_1的来源贡献,并使用因子分析法解析了碳质组分的来源.结果表明,PM_(2.5)和PM_1的质量浓度均呈现春、夏、秋、冬这4个季节递增的趋势;PM_1是PM_(2.5)中的主要组成,而且秋冬季节随着灰霾发生频率的增加,PM_1质量浓度占PM_(2.5)的比值明显升高;北京市大气环境中存在明显的二次污染,且SOC更容易在粒径更小的PM_1中积聚.散煤燃烧、机动车尾气排放、居民面源及生物质燃烧排放是北京市大气颗粒物的重要贡献来源;汽油车尾气、柴油车尾气、生物质燃烧和燃煤排放是北京市大气颗粒物中碳质组分的主要来源.  相似文献   

9.
《环境保护科学》2017,(6):66-70
文章以位于温州城区的瓯海区为例,在建立大气污染源清单的基础上,利用WRF-CMAQ、CALPUFF模型分析了外来污染物区域输送对瓯海区的影响,模拟了瓯海区主要大气污染物浓度分布,解析了区域大气污染物排放来源。WRF-CMAQ模型模拟结果表明,区域大气污染物SO_2、NO_2、PM_(10)和PM_(2.5)的输送对瓯海区的贡献影响均呈现冬季(1月)>春季(4月)>秋季(10月)>夏季(7月)的变化规律,这可能与大气污染物来源有关。CALPUFF模型模拟结果显示,瓯海区SO_2和PM_(10)的年平均浓度达标,但NO_2和PM_(2.5)出现超标现象。除SO_2均能达标外,部分敏感目标处NO_2、PM_(10)和PM_(2.5)年平均浓度有不同程度的超标现象。来源分析结果表明,瓯海区大气污染物SO_2和NO_2主要来自本地源排放,而PM_(10)和PM_(2.5)本地源与外来源的排放贡献相当。  相似文献   

10.
南昌市固定燃烧点源大气污染物排放清单及特征   总被引:2,自引:0,他引:2  
大气污染物排放清单是了解区域污染物排放特征、准确模拟空气质量的重要资料,而工业点源是大气污染的重点排放源.通过收集相关活动水平信息和合理的排放因子,采用"自下而上"的方法建立了南昌市2014年点源大气污染物排放清单.结果表明,SO_2、NO_x、CO、PM_(10)、PM_(2.5)和VOC排放总量分别为29576.2、17115.1、25946.6、4689.4、922.9和1190.4 t,其中,金属炼制行业对SO_2、CO和VOC的贡献最高,分别占37.75%、30.59%和38.45%;火电行业是NO_x的主要来源,其贡献率为47%;水泥等建材制造行业对PM_(10)和PM_(2.5)排放贡献最高,分别为26%和25%.根据排放源污染物排放量及地理坐标信息,建立了0.4 km×0.4 km的污染物排放量空间分布特征图,结果表明,南昌市大气污染物排放较为集中,青山湖区北部和新建区北部是SO_2、NO_x、CO和VOC的主要排放区,而PM_(10)和PM_(2.5)的排放量相对分散,并在安义县出现排放高值区.通过将计算结果与统计数据结果进行对比,了解所估算清单的准确程度.对SO_2和NO_x的计算值和统计值进行统计分析,结果显示,NMB(标准化平均偏差)和NME(标准化平均误差)值均小于50%,清单计算精度较高.同时,为了解清单数据质量,对清单的不确定性进行定量分析,结果显示,SO_2和VOC不确定性较低而PM_(10)和PM_(2.5)的不确定性相对较高,清单整体不确定性与其他研究结果相差不大.建议后期研究可以从提升基础数据质量和建立具有区域代表性的排放因子数据库着手,从而减小排放量的不确定性,获得精准可靠的大气污染物清单并应用于空气质量模型预报等更深入的研究.  相似文献   

11.
苏锡常地区PM2.5污染特征及其潜在源区分析   总被引:3,自引:1,他引:2  
利用2014年12月—2015年11月苏锡常地区国控大气环境质量监测站发布的逐时数据,分析了研究区PM_(2.5)浓度的季节变化和空间分布特征,并利用HYSPLIT模型分析了大气污染物的输送路径及苏锡常地区PM_(2.5)的潜在源区.结果表明,苏锡常地区PM_(2.5)浓度日均值变化趋势基本一致,均呈现冬季高、夏季低的规律.PM_(2.5)浓度四季空间差异显著,不同监测站之间的差异较小.四季PM_(2.5)浓度与其它污染物之间相关性显著.单位面积污染物排放量与空气质量分布的空间错位,表明该地区PM_(2.5)污染与区域性污染物迁移有较大关系.苏锡常地区气流后向轨迹季节变化特征明显,冬、春、秋季的气流主要来自西北内陆地区,夏季气流以东南和西南方向输入居多.聚类分析表明,来自内陆的污染气流和来自海洋的清洁气流是苏锡常地区两种主要输送类型,外源污染气流不仅直接输送颗粒物,还贡献了大量的气态污染物.山东南部、江苏西部、安徽东部、浙江北部及江西西北地区对苏锡常冬季PM_(2.5)浓度贡献较大,春、夏、秋季的潜在源区主要分布在苏锡常本地和周边城市.  相似文献   

12.
2013年1月北京市PM2.5区域来源解析   总被引:9,自引:11,他引:9  
李璇  聂滕  齐珺  周震  孙雪松 《环境科学》2015,36(4):1148-1153
2013年1月,北京地区经历了多次严重的灰霾天气,细颗粒物污染已成为北京地区所面临的重要问题.了解和掌握北京细颗粒物的污染来源,是解决细颗粒物污染的重要途径,也是制定防治政策的重要依据.通过建立三维空气质量模型系统,对2013年1月20~24日的污染过程进行模拟,并运用PSAT技术探究北京市细颗粒物污染的区域来源.结果表明,本地源排放是北京市PM2.5的主要来源,平均贡献率为34%;河北和天津的平均贡献率分别为26%和4%;京津冀周边地区及模拟边界外的贡献分别为12%和24%.在重污染日,区域传输对北京市PM2.5的影响显著增强,是北京PM2.5污染的主要来源.PM2.5中的硝酸盐主要来自北京市周边地区的贡献,而硫酸盐和二次有机气溶胶呈现远距离传输的特性,铵盐和其他组分则主要来自北京本地的贡献.  相似文献   

13.
京津冀区域PM2.5污染相互输送特征   总被引:2,自引:1,他引:1  
王燕丽  薛文博  雷宇  王金南  武卫玲 《环境科学》2017,38(12):4897-4904
基于CAMx-PSAT空气质量模型,对2015年京津冀区域PM_(2.5)污染及相互输送特征进行定量模拟,建立了京津冀13个城市的PM_(2.5)传输矩阵.结果表明,在年均尺度上京津冀区域PM_(2.5)以本地污染源贡献为主(21.49%~68.74%),传输贡献为辅,其中区域内传输贡献约为13.31%~54.62%,区外贡献约为13.32%~45.02%.PM_(2.5)传输特征呈现显著的时空差异性,区域中部城市唐山、北京、天津、保定和石家庄PM_(2.5)受本地贡献主导,在冬季尤其明显,而受传输影响较大的城市多分布在区域边界且在南部集中.区内作为汇的城市有廊坊、衡水、承德、秦皇岛和邢台,作为源的城市有天津、沧州、唐山、北京、石家庄和邯郸,张家口和保定对区内城市输出和受区内输入基本持平.典型城市分析证明城市间PM_(2.5)污染交互影响,北京与廊坊、保定、承德、天津和沧州等城市之间,天津与廊坊、唐山、北京、沧州和保定等城市之间,石家庄与邢台、衡水、保定、邯郸和廊坊之间均存在显著的PM_(2.5)相互输送.  相似文献   

14.
2014—2016年海口市空气质量概况及预报效果检验   总被引:1,自引:0,他引:1  
本文主要基于CUACE模式在海口市的预报产品,结合2014年3月—2017年2月海口市AQI、PM2.5、PM10和O3的实况资料进行预报效果检验.结果表明,①近3年海口市空气质量等级主要以优和良为主,但仍有少部分天数以PM10、PM2.5和O3为首要污染物,分别占所有首要污染物天数的27.6%、29.5%和42.9%,其中O3上升幅度较快.②CUACE模式能较好的模拟出AQI和3类污染物浓度的变化特征,其中PM2.5的预报值与实测值最为接近,而PM10和O3普遍偏低.③日平均浓度的预报效果检验表明,PM2.5的标准误差(RMSE)最小,AQI和PM10次之,O3最大.3个时次预报平均偏差(MB)和归一化偏差(MNB)均为负值,表明CUACE模式预报的污染要素浓度均偏低于实测值.④海口市空气质量为优等级时,TS评分最高;无首要污染物时,首要污染物预报的TS评分最高,但首要污染物为PM2.5、PM10或O3时,TS评分均偏低.  相似文献   

15.
以大气污染物协同控制与精准治理的需求为导向,开展湖北省荆州市大气污染物的来源分析.基于FLEXPART-WRF模式揭示了2008—2017年荆州市PM2.5周边源"影响域"的季节气候特征,估算了大气污染物区域传输和局地排放的相对贡献,确定出不同季节的大气污染物主要传输通道.结果表明,荆州地区PM2.5主要"影响域"为湖北、湖南、河南和安徽省.不同季节湖北省外源传输对荆州PM2.5"影响域"的贡献率分别为春季50.4%、夏季33.9%、秋季42.6%、冬季43.0%和年均45.1%.春季3条区域传输通道分别为北通道(沿南阳盆地-荆州)、东通道(沿长江航道-荆州)以及南通道(沿雪峰山-荆州);夏季主要为南通道;秋、冬季分别为北通道、东北通道(沿大别山低山丘陵-荆州)及东通道.针对荆州主要3类重污染天气型的典型个例"影响域"分析表明,高压静稳型PM2.5污染主要来源于本地排放,省内贡献率达87.8%;低压倒槽型PM2.5污染主要来源于偏南输送和本地累积,省内贡献率达55.0%;冷锋输送型PM2.5污染主要来源于北路区域传输,省外贡献率达77.2%.对于冬季重污染期间,建议重点围绕荆州本地与省内荆门、襄阳、孝感、天门、潜江、武汉、随州、宜昌及省外常德、南阳、信阳等地开展协作,加强区域间大气污染联防联控.该项研究可为区域大气污染精细化管控与靶向治理提供科学依据.  相似文献   

16.
大气细粒子和臭氧是影响我国城市空气质量的主要污染物质,其浓度的大小不仅与污染源的排放量有关,气象条件也是影响其浓度分布特征的重要因素.要评估污染物减排措施的效果,有必要将气象条件的影响剥离出来,仅评估排放量的降低对污染物浓度长期变化趋势的影响.本文使用KZ(Kolmogorov-Zurbenko)滤波方法对河北省石家庄、保定、张家口三市2013—2017年PM_(2.5)和O_3逐日浓度时间序列进行分解,并使用同期地面气象观测数据对各时间序列进行逐步回归分析,将经过KZ滤波后的长期序列与经逐步回归后的结果的差值再次进行滤波处理,得到去除气象影响的污染物浓度长期变化趋势,该浓度仅与污染物的排放量有关.结果表明,因污染源排放的影响,河北省三市大气PM_(2.5)浓度在研究年内除在2017年初略有上升以外,其余季节均呈下降趋势.河北省三市大气O_3浓度在研究年内均有波动上升趋势.气象条件对PM_(2.5)浓度长期变化趋势的影响大于O_3.  相似文献   

17.
2015—2017年天水市大气污染物变化特征及来源分析   总被引:1,自引:0,他引:1  
据天水市2015-2017年大气污染物(SO2、NO2、CO、O3、PM2.5和PM10)的监测数据及气象资料,分析了天水市大气污染物的浓度变化特征,并利用排放源清单和HYSPLIT模型对污染物来源进行了解析.结果表明:①天水市空气质量有所下降,总体优良率达84.9%.SO2、NO2、CO均达标,污染物以颗粒物和O3为主.②一次污染物SO2、NO2、CO、PM2.5和PM10浓度具有相似的季节变化和日变化特征,冬季最高,夏季最低,日变化呈早晚双峰型.二次污染物O3夏季浓度最高,冬季最低,日变化呈单峰型.③天水市空气质量主要受污染物的本地排放和外来输送的影响,本地民用和工业部门对SO2、CO、PM2.5和PM10的贡献最大,交通和工业部门对NOx的分担率最高,民用部门是CO的最大排放源;西北和东部气流是污染物外来的最主要输送路径.此外,污染物在城市大气中的稀释、扩散和转移也受当地气象因素(气温、降水、风向等)的影响.  相似文献   

18.
廊坊市区主要大气污染源排放清单的建立   总被引:4,自引:1,他引:3  
通过调研、统计廊坊市区工业、城中村及机动车等资料,结合以往清单文献研究结果及清单编制指南中的排放因子,计算了廊坊市区主要大气污染物的排放量,得到廊坊市区2014年主要大气污染源排放清单.结果显示,2014年廊坊市区工业源(固定燃烧)NO_x、SO_2、NMVOC、CO、PM_(10)、PM_(2.5)排放总量分别为6.4×10~3、1.2×10~4、31、1.0×10~4、7.3×10~2、4.4×10~2t,其中热电行业排污贡献率最高,分别占NO_x、SO_2、CO、PM_(10)、PM_(2.5)工业源(固定燃烧)年排放总量的55%、48%、67%、63%、69%;安次区工业企业对气态污染物贡献较高,广阳区及开发区工业企业对颗粒物排污贡献较大.低矮面源(城中村)NO_x、SO_2、NMVOC、CO、PM10、PM_(2.5)年排放总量分别为1.8×10~2、3.6×10~3、3.0、4.9×10~3、1.5×10~2、72 t.道路移动源CO、HC、NO_x、PM_(2.5)年排放总量分别为2.4×10~4、1.9×10~3、2.2×10~3、44 t,其中小型客车对HC和CO贡献率较高,分别为53%和61%;NO_x年排放总量中26%由重型货车贡献;PM_(2.5)则主要由轻型货车和重型货车贡献,占比分别为39%和21%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号