首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Su YH  Zhu YG  Lin AJ  Zhang XH 《Chemosphere》2005,60(6):802-809
The uptake of atrazine by rice seedlings (Oryza sativa L.) through plant roots from nutrient solution was investigated in the presence and absence of Cd2+ over an exposure period of four weeks. It was found that both atrazine and Cd2+ were toxic to rice seedlings. Both shoot and root biomasses decreased when the seedlings were exposed to increasing atrazine or Cd2+ concentrations in nutrient solutions. In the absence of Cd2+, a linear relationship was observed between atrazine concentrations in roots/shoots and in external solution, and more atrazine is concentrated in roots than in shoots. When atrazine and Cd2+ concentrations in solution were maintained at mole ratio of 1:1, the accumulation of atrazine by seedlings was less and the seedling biomass was greater than found with other ratios, such as 1:2 or 2:1. Therefore, the formation of the complex between atrazine and Cd2+ reduced the individual toxicities. Analyses of data with the quasi-equilibrium partition model indicated that the atrazine concentrations in rice seedlings and external water were close to equilibrium. In the presence of Cd2+, however, the measured bioconcentration factor (BCF) of atrazine with roots and shoots were considerably greater. The latter findings resulted presumably from the atrazine-Cd2+ complex formation that led to a large apparent BCF.  相似文献   

2.
Selecting a phytoextraction plant with high Cd-accumulating ability based on the plant's compatibility with mechanized cultivation techniques may yield more immediately practical results than selection based on high tolerance to Cd. Rice (Oryza sativa L., cv. Nipponbare and Milyang 23), soybean (Glycine max [L.] Merr., cv. Enrei and Suzuyutaka), and maize (Zea mays L., cv. Gold Dent) were grown on one Andosol and two Fluvisols with low concentration of Cd contamination ranging from 0.83 to 4.29 mg Cd kg(-1), during 60 days in pots (550 mL) placed in a greenhouse. Shoot Cd uptake was as follows: Gold Dent相似文献   

3.
The toxicity of metal oxides (CdO, ZnO, PbO) were compared with each other and the critical levels of metal uptake by rice plants were determined. The order of metal toxicity to rice plants is CdO greater than ZnO greater than PbO. The highest concentration obtained for unpolished rice was 4.97 micrograms/g at the Cd 10,000 ppm in soil. This values is higher than every other we have seen in the reports for treatment with CdO. We are able to find out that the concentration of 10,000 ppm Cd in the form of CdO in the critical one towards rice plant. By contrast, such damage was not observed at even higher levels of ZnO and PbO were considered to have low toxicity toward rice plant. Also, a negative correlation between Zn or Cu accumulation in rice plants and Cd concentration in soil was found.  相似文献   

4.
The disposal of fly-ash (FA) from coal-fired power stations causes significant economic and environmental problems. Use of such contaminated sites for crop production and use of contaminated water for irrigation not only decreases crop productivity but also poses health hazards to humans due to accumulation of toxic metals in edible grains. In the present investigation, three rice cultivars viz., Saryu-52, Sabha-5204, and Pant-4 were grown in garden soil (GS, control) and various amendments (10%, 25%, 50%, 75% and 100%) of FA for a period of 90 days and effect on growth and productivity of plant was evaluated vis-a-vis metal accumulation in the plants. The toxicity of FA at higher concentration (50%) was reflected by the reduction in photosynthetic pigments, protein and growth parameters viz., plant height, root biomass, number of tillers, grain and straw weight. However, at lower concentrations (10-25%), FA enhanced growth of the plants as evident by the increase of studied growth parameters. The cysteine and non-protein thiol (NP-SH) content showed increase in their levels up to 100% FA as compared to control, however, maximum content was found at 25% FA in Saryu-52 and Pant-4 and at 50% FA in Sabha-5204. Accumulation of Fe, Si, Cu, Zn, Mn, Ni, Cd and As was investigated in roots, leaves and seeds of the plants. Fe accumulation was maximum in all the parts of plant followed by Si and both showed more translocation to leaves while Mn, Zn, Cu, Ni and Cd showed lower accumulation and most of the metal was confined to roots in all the three cultivars. As was accumulated only in leaves and was not found to be in detectable levels in roots and seeds. The metal accumulation order in three rice cultivars was Fe > Si > Mn > Zn > Ni > Cu > Cd > As in all the plant parts. The results showed that rice varieties Saryu-52 and Sabha-5204 were more tolerant and could show improved growth and yield in lower FA application doses as compared to Pant-4. Thus, Sabha-5204 and Saryu-52 are found suitable for cultivation in FA amended agricultural soils for better crop yields.  相似文献   

5.
Cadmium (Cd) uptake and tolerance were investigated among 20 rice cultivars based on a field experiment (1.2 mg Cd kg−1 in soil) and a soil pot trial (control, 100 mg Cd kg−1), and rates of radial oxygen loss (ROL) were measured under a deoxygenated solution. Significant differences were found among the cultivars in: (1) brown rice Cd concentrations (0.11-0.29 mg kg−1) in a field soil, (2) grain Cd tolerance (34-113%) and concentrations (2.1-6.5 mg kg−1) in a pot trial, and (3) rates of ROL (15-31 mmol O2 kg−1 root d.w. h−1). Target hazard quotients were calculated for the field experiment to assess potential Cd risk. Significant negative relationships were found between rates of ROL and concentrations of Cd in brown rice or straw under field and greenhouse conditions, indicating that rice cultivars with higher rates of ROL had higher capacities for limiting the transfer of Cd to rice and straw.  相似文献   

6.
Thiolic ligands and several amino acids (AAs) are known to build up in plants against heavy metal stress. In the present study, alteration of various AAs in rice and its synchronized role with thiolic ligand was explored for arsenic (As) tolerance and detoxification. To understand the mechanism of As tolerance and stress response, rice seedlings of one tolerant (Triguna) and one sensitive (IET-4786) cultivar were exposed to arsenite (0–25 μM) for 7 days for various biochemical analyses using spectrophotometer, HPLC and ICPMS. Tolerant and sensitive cultivars respond differentially in terms of thiol metabolism, essential amino acids (EEAs) and nonessential amino acids (NEEAs) vis-á-vis As accumulation. Thiol biosynthesis-related enzymes were positively correlated to As accumulation in Triguna. Conversely, these enzymes, cysteine content and GSH/GSSG ratio declined significantly in IET-4786 upon As exposure. The level of identified phytochelatin (PC) species (PC2, PC3 and PC4) and phytochelatin synthase activity were also more pronounced in Triguna than IET-4786. Nearly all EAAs were negatively affected by As-induced oxidative stress (except phenylalanine in Triguna), but more significantly in IET-4786 than Triguna. However, most of the stress-responsive NEAAs like glutamic acid, histidine, alanine, glycine, tyrosine, cysteine and proline were enhanced more prominently in Triguna than IET-4786 upon As exposure. The study suggests that IET-4786 appears sensitive to As due to reduction of AAs and thiol metabolic pathway. However, a coordinated response of thiolic ligands and stress-responsive AAs seems to play role for As tolerance in Triguna to achieve the effective complexation of As by PCs.  相似文献   

7.
Liu W  Yang YS  Zhou Q  Xie L  Li P  Sun T 《Chemosphere》2007,67(6):1155-1163
Assessment of environmental contamination on ecology (plant) at molecular and population levels is important in risk quantification and remediation study. Random amplified polymorphic DNA (RAPD) assay and related other fingerprinting techniques have been employed to detect the genotoxin-induced DNA damage and mutations. This research compared the effects occurring at molecular and population levels in rice seedlings exposed to cadmium (Cd) concentrations of 15-60 mg l(-1) for 8 days with quartz sand culture. Inhibition of root growth and increase of total soluble protein content in root tips of rice seedlings were observed with the increase of Cd concentration. For the RAPD analyses, 12 RAPD primers of 50-70% GC content were found to produce unique polymorphic band patterns and subsequently were used to produce a total of 180 bands of 179-3056 bp in molecular size in the control root tips of rice seedlings. Results produced by these RAPD primers indicate that changes in RAPD profiles of root tips after Cd treatment include modifications in band intensity and gain or loss of bands by comparison with control. The effect of changes was dose-dependent. Genomic template stability compares favourably with the traditional indices such as root growth and soluble protein content. The DNA polymorphisms detected by RAPD analysis can be applied as a suitable biomarker assay for the detection of genotoxic effects of Cd contamination on plants.  相似文献   

8.
Environmental Science and Pollution Research - The accumulation of arsenic (As) in rice is one of the food security-related concerns in As-contaminated areas all over the world. Biochar, a...  相似文献   

9.
In China, total Hg (HgT) and methylmercury (MeHg) were quantified in rice grain grown in three sites using water-saving rice cultivation methods, and in one Hg-contaminated site, where rice was grown under flooded conditions. Polished white rice concentrations of HgT (water-saving: 3.3 ± 1.6 ng/g; flooded: 110 ± 9.2 ng/g) and MeHg (water-saving 1.3 ± 0.56 ng/g; flooded: 12 ± 2.4 ng/g) were positively correlated with root-soil HgT and MeHg contents (HgT: r2 = 0.97, MeHg: r2 = 0.87, p < 0.05 for both), which suggested a portion of Hg species in rice grain was derived from the soil, and translocation of Hg species from soil to rice grain was independent of irrigation practices and Hg levels, although other factors may be important. Concentrations of HgT and other trace elements were significantly higher in unmilled brown rice (p < 0.05), while MeHg content was similar (p > 0.20), indicating MeHg infiltrated the endosperm (i.e., white rice) more efficiently than inorganic Hg(II).  相似文献   

10.
A study was conducted to investigate the accumulation and distribution of arsenic in different fractions of rice grain (Oryza sativa L.) collected from arsenic affected area of Bangladesh. The agricultural soil of study area has become highly contaminated with arsenic due to the excessive use of arsenic-rich underground water (0.070+/-0.006 mg l(-1), n=6) for irrigation. Arsenic content in tissues of rice plant and in fractions of rice grain of two widely cultivated rice varieties, namely BRRI dhan28 and BRRI hybrid dhan1, were determined. Regardless of rice varieties, arsenic content was about 28- and 75-folds higher in root than that of shoot and raw rice grain, respectively. In fractions of parboiled and non-parboiled rice grain of both varieties, the order of arsenic concentrations was; rice hull>bran-polish>brown rice>raw rice>polish rice. Arsenic content was higher in non-parboiled rice grain than that of parboiled rice. Arsenic concentrations in parboiled and non-parboiled brown rice of BRRI dhan28 were 0.8+/-0.1 and 0.5+/-0.0 mg kg(-1) dry weight, respectively while those of BRRI hybrid dhan1 were 0.8+/-0.2 and 0.6+/-0.2 mg kg(-1) dry weight, respectively. However, parboiled and non-parboiled polish rice grain of BRRI dhan28 contained 0.4+/-0.0 and 0.3+/-0.1 mg kg(-1) dry weight of arsenic, respectively while those of BRRI hybrid dhan1 contained 0.43+/-0.01 and 0.5+/-0.0 mg kg(-1) dry weight, respectively. Both polish and brown rice are readily cooked for human consumption. The concentration of arsenic found in the present study is much lower than the permissible limit in rice (1.0 mg kg(-1)) according to WHO recommendation. Thus, rice grown in soils of Bangladesh contaminated with arsenic of 14.5+/-0.1 mg kg(-1) could be considered safe for human consumption.  相似文献   

11.
12.

Biochar was carbon-rich and generated by high-temperature pyrolysis of biomass under oxygen-limited conditions. Due to the limitations of surface functional groups and the weakness of surface activity in the field of environmental remediation, the raw biochar frequently was chemically modified to improve its properties with a new performance. In this study, a kind of high-efficiency and low-cost amino biochar modified by nano zero-valent iron (ABC/NZVI) was synthesized and applied to paddy soil contaminated with arsenic (As). Dynamic changes of soil properties, arsenic speciations and rhizosphere microbial communities have been investigated over the whole growth period of rice plants. Pot experiments revealed that the ABC/NZVI could decrease the arsenic concentration in rice straw by 47.9% and increase the content of nitrogen in rice straw by 47.2%. Proportion of Geobacter in soil with ABC/NZVI treatment increased by 175% in tillering period; while Nitrososphaera decreased by 61 and 20% in tillering and maturity, respectively, compared to that of control. ABC/NZVI promotes arsenic immobilization in rhizosphere soil and precipitation on root surface and reduces arsenic accumulation in rice. At the same time, ABC/NZVI would inhibit Nitrososphaera which is related to ammonia oxidation process, and it would have a promising potential as soil amendment to reduce nitrogen loss probably.

  相似文献   

13.
Zeng LS  Liao M  Chen CL  Huang CY 《Chemosphere》2006,65(4):567-574
The effect of lead (Pb) treatment on the soil microbial activities (soil microbial biomass and soil basal respiration) and rice physiological indices were studied by greenhouse pot experiment. Pb was applied as lead acetate at six different levels in two different paddy soils, namely 0 (control), 100, 300, 500, 700, 900 mg kg-1 soil. The results showed that the application of Pb at lower level (<300 mg kg-1) as lead acetate resulted in a slight increase in soil microbial activities compared with the control, and had an inhibitory influence at high concentration (>500 mg Pb kg-1 soil), which might be the critical concentration of Pb causing a significant decline in the soil microbial activities. However, the degree of influence on soil microbial activities by Pb was related to the clay and organic matter contents of the soils. On the other hand, when the level of Pb treatments increased to 500 mg kg-1, there was ecological risk for both soil microbial activities and plants. The results also revealed that there was a consistent trend that the chlorophyll contents increased initially, and then decreased gradually with increase in Pb concentration. Pb was effective in inducing proline accumulation and its toxicity causes oxidative stress in rice plants. In a word, soil microbial activities and rice physiological indices, therefore, may be sensitive indicators reflecting environmental stress in soil-Pb-rice system.  相似文献   

14.
Environmental Science and Pollution Research - Recently the applications of engineered nanoparticles in the agricultural sector is increased as nano-pesticides, nano-fertilizers, nanocarrier for...  相似文献   

15.
This study was conducted to investigate the effect of external iron status and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake. Rice seedlings (Oryza sativa L.) were used as model plant, and were grown in artificially contaminated sandy soils irrigated with Murashige and Skoog (MS) culture solution. Arsenate uptake in roots and shoots of rice seedlings were affected significantly (> 0.05) while dimethylarsinic acid (DMAA) was not by the additional iron and chelating ligand treatments. Regardless of iron concentrations in the soil solution, HIDS increased arsenic uptake for roots more than EDTA and EDDS. Chelating ligands and arsenic species also influenced iron uptake in rice roots. Irrespective of arsenic species, HIDS was found to be more effective in the increase of iron bioavailability and uptake in rice roots compared to other chelants. There was a significant positive correlation (= 0.78, < 0.05) between arsenate and iron concentrations in the roots of rice seedlings grown with or without additional iron indicating that arsenate inhibit iron uptake. In contrast, there was no correlation between iron and DMAA uptake in roots. Poor correlation between iron and arsenic in shoots indicated that iron uptake in shoots was neither affected by additional iron nor by arsenic species. Compared to the control, chelating ligands increased iron uptake in shoots of rice seedlings significantly (< 0.05). Regardless of additional iron and arsenic species, iron uptake in rice shoots did not differed among EDTA, EDDS, and HIDS treatments.  相似文献   

16.
The effects of two sulfur (S) sources (SO(4)(2-), S(0)), and three rates of S application (0, 30, 120 mgS/kg) on the formation of iron plaque in the rhizosphere, and on the root surface of rice, and As (arsenic) uptake into rice (Oryza sativa L.) were studied in a combined soil-sand culture experiment. Significant differences in As uptake into rice between +S and -S treatments were observed in relation to S sources, and rates of S application. Concentrations of As in rice shoots decreased with increasing rates of S application. The mechanism could be ascribed to sulfur, induced the formation of iron plaque, since concentrations of Fe in iron plaque on quartz sands in the rhizosphere, and on the root surface of rice increased with increasing rates of S application. The results suggest that sulfur fertilization may be important for the development approaches to reducing As accumulation in rice.  相似文献   

17.
A glass house experiment was conducted to investigate the effect of soil arsenic on photosynthetic pigments, chlorophyll-a and -b, and their correlations with rice yield and growth. The experiment was designed with three replications of six arsenic treatments viz. control, 10, 20, 30, 60, 90 mg of As kg(-1) soil. Arsenic concentration in initial soil, to which the above mentioned concentrations of arsenic were added, was 6.44+/-0.24 mg kg(-1). Both chlorophyll-a and -b contents in rice leaf decreased significantly (p<0.05) with the increase of soil arsenic concentrations. No rice plant survived up to maturity stage in soil treated with 60 and 90 mg of As kg(-1). The highest chlorophyll-a and -b contents were observed in control treatment (2.62+/-0.24 and 2.07+/-0.14 mg g(-1) were the average values of chlorophyll-a and -b, respectively of the five rice varieties) while 1.50+/-0.20 and 1.04+/-0.08 mg g(-1) (average of five rice varieties) of chlorophyll-a and -b, respectively were the lowest. The content of photosynthetic pigments in these five rice varieties did not differ significantly (p>0.05) from each other in control treatment though they differed significantly (p<0.05) from each other in 30 mg of As kg(-1) soil treatment. Among the five rice varieties, chlorophyll content in BRRI dhan 35 was found to be mostly affected with the increase of soil arsenic concentration while BRRI hybrid dhan 1 was least affected. Well correlations were observed between chlorophyll content and rice growth and yield suggesting that arsenic toxicity affects the photosynthesis which ultimately results in the reduction of rice growth and yield.  相似文献   

18.
This study focused on the cadmium (Cd) tolerance of mangroves with application of phosphate (P) in order to explore whether exogenous P can alleviate Cd stress on these intertidal species. Kandelia obovata (S. L.) seedlings were cultivated in rhizoboxes under different levels of Cd and P concentrations. The speciation distributions of Cd in the rhizosphere and non-rhizosphere sediments were examined by sequential extraction procedures; organic acid in plant tissues and soil solution was measured by high-performance liquid chromatography; Cd and P accumulation in the plants was also determined. Results showed that considerable differences existed in Cd speciation distributions between rhizosphere and non-rhizosphere sediments. Root activity influenced the dynamics of Cd, P application increased the organic acid content in root tissues, P also increased Cd accumulation in roots whilst lowering Cd translocation from root to the above-ground tissues, and a significant positive correlation was found between Cd and P in roots (r?=?0.905). It is postulated that Cd detoxification of K. obovata (S. L.) is associated with higher Cd immobilization in the presence of higher P and organic acid contents in root tissue.  相似文献   

19.
Time-dependent changes in enzymatic and non-enzymatic antioxidants, and lipid peroxidation were investigated in roots of rice (Oryza sativa) grown hydroponically with Cd, with or without pretreatment of salicylic acid (SA). Exposure to 50 microM Cd significantly decreased root growth, and activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), but increased the concentrations of H(2)O(2), malondialdehyde (MDA), ascorbic acid (AsA), glutathione (GSH) and non-protein thiols (NPT). However, pretreatment with 10 microM SA enhanced the activities of antioxidant enzymes and the concentrations of non-enzymatic antioxidants, but lowered the concentrations of H(2)O(2) and MDA in the Cd-stressed rice compared with the Cd treatment alone. Pretreatment with SA alleviated the Cd-induced inhibition of root growth. The results showed that pretreatment with SA enhanced the antioxidant defense activities in Cd-stressed rice, thus alleviating Cd-induced oxidative damage and enhancing Cd tolerance. The possible mechanism of SA-induced H(2)O(2) signaling in mediating Cd tolerance was discussed.  相似文献   

20.
Aquatic macrophytes were found to be the potential scavengers of heavy metals from aquatic environment. In this study, several physiological responses of Alternanthera philoxeroides (Mart.) Griseb leaves to elevated concentrations of cadmium (up to 10mM) were investigated. It was found that A. philoxeroides was able to accumulate cadmium in its leaves. The pigment contents decreased with the increase of the Cd concentrations. The Cd could induce rise of the activity of peroxidase (POD) at lower concentration (<5mM), however, when the concentration of Cd rose up to 10mM, the POD activity declined. The changes of superoxide dismutase (SOD) and Catalase (CAT) activities were exactly opposite to that of POD. In the leaves of Cd-treated fronds, the amounts of three polypeptides with apparent molecular weights 80, 39 and 28kDa, respectively, were became visible in SDS-PAGE. The nature of these polypeptides remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号