首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
对含盐有机电镀废水进行预处理,考察了多元氧化微电解工艺对废水有机污染物的去除效果和可生化性的改善效果。结果表明,多元氧化微电解工艺的最佳条件为:pH 3.0,填充比(填料与废水的体积比)1∶1,微电解时间45min,气水比(体积比)1∶1;在此条件下,COD去除率可达67.1%。多元氧化微电解工艺能使BOD5/COD由原来的0.10升高到0.32~0.41,提高了废水的可生化性,减轻了后续生化处理负荷,是预处理含盐有机电镀废水的有效方法。  相似文献   

2.
黄姜废水的铁炭微电解-混凝预处理研究   总被引:6,自引:0,他引:6  
研究了高浓度黄姜废水的铁炭微电解-混凝工艺,结果表明,在进水pH 4.0、停留时间为40 min且有曝气条件下,COD去除率达到64.70%,色度去除率为72.22%,废水的BOD/COD值可由0.29提高到0.56,有利于废水的后续生化处理.  相似文献   

3.
黄姜废水的铁炭微电解-混凝预处理研究   总被引:13,自引:0,他引:13  
研究了高浓度黄姜废水的铁炭微电解-混凝工艺,结果表明,在进水pH4.0、停留时间为40min且有曝气条件下,COD去除率达到64.70%,色度去除率为72.22%,废水的BOD/COD值可由0.29提高到0.56,有利于废水的后续生化处理。  相似文献   

4.
针对印染废水二级生化出水水质难降解且难以达标的现状,研究在不调节p H的前提下,采用铁碳微电解混凝工艺进行处理研究。通过单因素实验确定最优条件范围,建立响应面(response surface methods,RSM)分析实验,确定铁碳微电解的最佳工艺条件为:Fe的投量为72.1 g/L、m(C)∶m(Fe)为2.98∶1、水力停留时间(HRT)为2.6 h。最佳混凝条件为:Al2(SO4)3投量为100 mg/L、混凝沉淀时间为30 min。实验结果表明,在上述最优工艺条件下对该废水进行深度处理,对COD的去除率能达到50%以上,出水COD低至46.1 mg/L,达到提标后的《纺织染整工业水污染物排放标准》新标准(COD≤60 mg/L),其药剂处理成本为每吨印染废水0.355元左右,该法技术可行、经济合理。  相似文献   

5.
Fe/C微电解-Fenton氧化-混凝沉淀-生化法处理染料母液废水   总被引:6,自引:2,他引:4  
采用Fe/C微电解-Fenton氧化-混凝沉淀-生物接触氧化法处理强酸性染料生产母液废水。结果表明,组合工艺对该强酸性母液废水具有理想的处理效果。在铁炭处理单元,当铁炭比为2.5∶1,曝气量为90 L/h,HRT=80 min时,单级色度和COD去除率分别为77.2%和48.7%,BOD5/COD升高至0.30;Fenton氧化处理单元,当30%H2O2投加量为3 mL/L,pH=3.5,HRT=80 min时,单级色度和COD去除率分别为83.6%和77.4%,BOD5/COD升高至0.48。再经过混凝沉淀和生物接触氧化处理后,废水的色度和COD总去除率可分别高于99.8%和99.2%。  相似文献   

6.
铁碳微电解-Fenton法预处理苯胺基乙腈生产废水   总被引:1,自引:0,他引:1  
采用铁碳微电解-Fenton法对苯胺基乙腈生产废水进行预处理实验。通过静态实验确定铁碳微电解最佳条件为铁屑投加量300 g/L,Fe/C质量比为2∶3,反应75 min,不需要调节进水pH;Fenton反应最佳条件为铁碳微电解出水pH=4,30%H2O2投加量15 mL/L,在搅拌条件下反应60 min;然后沉淀反应时调节pH为9,混凝沉淀75 min。在上述条件下通过动态实验得到系统连续反应在48 h内废水的COD和苯胺去除率在50%和70%以上,可生化性BOD5/COD也保持在0.3以上,为后续生物处理创造了良好条件。  相似文献   

7.
铁炭微电解/Fenton试剂预处理土霉素废水的研究   总被引:10,自引:3,他引:7  
研究了铁炭微电解/Fenton试剂法工艺对高浓度难生化处理的土霉素废水预处理效果.结果表明,当原水COD在6 000 mg/L、pH值为2.2时,铁炭微电解反应时间为80 min,铁炭微电解对原水COD的去除率>40%;铁炭微电解出水再投加220 mg/L的H2O2(30%)进行Fenton试剂法处理,常温下反应50 min对原水COD的去除率可提高到75%以上.铁炭微电解 Fenton试剂联合工艺的处理效果好、运行稳定、成本低廉,适宜对难降解的土霉素废水的预处理.  相似文献   

8.
以某油井钻井废水经高效混凝+吸附过滤处理后的出水为研究对象,采用Fe/Cu/C微电解对钻井废水进行深度处理研究。结果表明,Fe/Cu/C微电解的最佳工艺条件为:Fe/Cu/C质量比为7∶3∶10,Fe/Cu/C投加量为1 000 g/L,pH为3.0,气水比为54∶1,反应时间为180 min;Fe/Cu/C微电解对钻井废水深度处理的效能十分显著,在最佳工艺条件下,废水COD质量浓度由428.63 mg/L降至98.32 mg/L,COD去除率达到77.06%。  相似文献   

9.
微电解-Fenton联合工艺预处理煤层气井压裂废水   总被引:1,自引:0,他引:1  
利用Fenton强化微电解工艺对煤层气井压裂废水展开预处理研究,以COD去除率和可生化性(B/C)为考察指标,单独工艺正交实验结果表明pH为3、反应时间为90 min、铁碳体积比为1.5∶1和pH为4、反应时间为80 min、H2O2投加量为4 mL/L分别是微电解与Fenton反应的最优条件,各可获得48.1%和44.9%的COD去除率。在最优条件下进行微电解-Fenton联合运行实验,连续61 h内COD去除率均稳定在65%以上,B/C由0.158上升到0.3以上,有利于后续生化处理的运行。  相似文献   

10.
高浓度硝基苯类废水处理工艺   总被引:2,自引:0,他引:2  
介绍了“酸析-压滤-沉淀-AB法”工艺处理高浓度硝基苯类废水的改造工程,认为采用酸析-压滤-混凝沉淀或微电解-混凝初沉作预处理,能保证AB法生物处理高浓度硝基苯类废水达标排放。  相似文献   

11.
采用高温烧结型微电解填料预处理煤制油废水,通过正交实验研究了初始pH、微电解时间及曝气强度等对废水的预处理影响。结果表明,微电解影响因素从大到小依次为:微电解时间pH曝气强度;微电解预处理煤制油废水的最佳工艺参数为:初始pH 4.0,微电解90 min,气水比3∶1充氧曝气;通过平行实验,COD平均去除率及出水水质分别为54.7%和1 773 mg/L,废水生物毒性指标EC50由原水12.5%的高毒性转化成48.3%的中毒性,为后续生化系统的正常运行提供了有利条件,是预处理煤制油废水的有效方法之一。  相似文献   

12.
铁炭微电解深度处理焦化废水的研究   总被引:19,自引:11,他引:19  
采用曝气铁炭微电解工艺对焦化废水进行了深度处理.结果表明,在活性炭、铁屑和NaCl投加量分别为10 g/L、30 g/L和200 mg/L的条件下反应240 min,出水COD去除率在30%~40%;酸性条件可以进一步提高COD去除率;微电解可以去除原生化出水中的难降解有机物,出水物质的分子量主要集中于2000 Da以下,以脂类和烃类化合物为主;出水的可生化性有了大幅度提高,BOD5/COD由0.08增加到0.53.实验结果表明,铁炭微电解是深度处理焦化废水的一种有效工艺.  相似文献   

13.
Fenton氧化与铁炭微电解组合预处理DMF废水   总被引:1,自引:0,他引:1  
对COD表征模拟废水中DMF去除率的可行性进行了探讨。在此基础上,分别对铁炭微电解、Fenton氧化-铁炭微电解和铁炭微电解-Fenton氧化组合工艺对DMF废水的处理效果进行分析,结果表明,Fenton氧化-铁炭微电解工艺的处理效果较好。在pH=5,反应时间为1 h,FeSO4·7H2O投加量为1 000 mg/L、H2O2投加量为2.67 mL/L和不曝气的最佳反应条件下,Fenton氧化-铁炭微电解工艺对实际废水和废液中COD的去除率分别达到66.67%和72.22%,从而验证了该工艺处理DMF废水的可行性。此外,Fenton氧化处理DMF废水过程实际上是将酰胺基团和羰基的不饱和双键氧化分解的过程。  相似文献   

14.
采用铁炭微电解-Fenton联合工艺深度处理制药废水生化出水,探讨了初始pH、曝气量、反应时间等因素对微电解出水Fe2+和Fe3+变化规律、COD降解速率以及后续Fenton氧化效果的影响,为优化微电解-Fenton氧化联合工艺提出了微电解间歇加酸的理论。间歇加酸可提高微电解系统中COD降解速率和Fe2+含量,使后续Fenton氧化无需投加FeSO4·7H2O即可达到较好的COD去除效果。结果表明,当初始pH=2.5,曝气量为0.6 m3/h,间歇加酸30 min/次,微电解反应2 h,出水投加1 mL/L的H2O2进行Fenton氧化2 h,COD总去除率可达81.33%;间歇加酸30 min/次可将微电解反应2 h出水Fe2+浓度从50 mg/L提高至151 mg/L,COD降解速率从10.6 mg COD/(L·h)提高至22.2 mg COD/(L·h)。  相似文献   

15.
通过采用铁碳微电解-Fenton法预处理苯胺基乙腈生产废水的实验研究,分析了处理过程的COD降解动力学;同时研究了单纯活性炭吸附和微电解过程中COD去除率的变化。结果表明,铁碳微电解的初期COD降解过程近似符合一级反应动力学,并且得到微电解与活性炭吸附对铁碳微电解降解COD的关系式;Fenton反应中通过研究有机物浓度和过氧化氢初始浓度与反应进程的关系,建立了反应动力学模型;单纯吸附实验COD去除率在24 h内快速下降,而微电解在相应时间内COD去除率波动较小,为实际应用提供了数据经验和理论依据。  相似文献   

16.
二级Fenton氧化高浓度有机硅废水研究   总被引:2,自引:0,他引:2  
采用二级Fenton氧化技术对可生化性差的高浓度有机硅废水进行处理,考察了不同因素对COD去除率的影响,对比了一级氧化和二级氧化的效果。结果表明对于COD为9 600 mg/L的高浓度有机硅废水,pH为3,[H2O2]/[Fe2+]=2∶1为最佳的反应条件,COD去除率随着H2O2的投加量的增大先增大而后减小,每200 mL水样中先投加20%的硫酸亚铁12 mL,然后分2次投加30%的H2O2各4 mL,氧化完成后调整pH值为7~8静止沉淀,COD去除率达89.2%。对于某绝缘电器厂的生产废水经二级Fenton氧化处理后,出水有机物浓度显著降低,可生化性提高,Fenton二级氧化可以作为高浓度有机硅废水的预处理工艺。  相似文献   

17.
通过采用铁碳微电解-Fenton法预处理苯胺基乙腈生产废水的实验研究,分析了处理过程的COD降解动力学;同时研究了单纯活性炭吸附和微电解过程中COD去除率的变化。结果表明,铁碳微电解的初期COD降解过程近似符合一级反应动力学,并且得到微电解与活性炭吸附对铁碳微电解降解COD的关系式;Fenton反应中通过研究有机物浓度和过氧化氢初始浓度与反应进程的关系,建立了反应动力学模型;单纯吸附实验COD去除率在24h内快速下降,而微电解在相应时间内COD去除率波动较小,为实际应用提供了数据经验和理论依据。  相似文献   

18.
马铃薯淀粉废水属高浓度废水,COD达到30 000 mg/L左右,BOD为15 000 mg/L左右,可生化性较好。针对废水中主要含有淀粉、蛋白质和可溶性纤维等成分,筛选分离出能降解这些有机成分的6种酵母。以废水为培养液分别培养这6种酵母及其混合菌,实验结果表明,各酵母菌株对该废水都有较好的降解效果,混合菌的处理效果要好于单个菌株。在连续流废水培养条件下,混合酵母活性和菌体量也较高,MLSS稳定在12 g/L左右,其COD去除率稳定在77%左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号