首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
"十一五"期间在我国国内生产总值(GDP)、能源消费增长均超过规划目标的情况下,2010年全国SO2排放总量为2295万t,完成了在2005年基础上减排10%的规划目标。2010年全国实际SO2去除率为65%,比2005年提高23%。建议"十二五"期间将GDP年均增长率控制在7%以下,维持0.5~0.4能源消费弹性系数及0.7~0.6的电力能源消费弹性系数,提高SO2去除率至73%以上;国家有关部门逐年公布GDP年均增长率、能源消费弹性系数、电力能源消费弹性系数和节能减排公报。  相似文献   

2.
在回顾2000年-2010年中国能源消费的基础上,对中国2030年能源发展及耗煤量进行了预测,预测结果表明,2030年中国能耗总量将控制在55~60亿t标煤,耗煤量控制在40~45亿t标煤。建议中国2011年-2015年、2015年-2020年、2020年-2025年和2025年-2030年能源弹性系数分别为0.5、0.5、0.4和0.3。开展煤炭休养生息战略,多进口煤炭。  相似文献   

3.
水泥工业不仅通过能源利用排放CO2,而且还是工业生产工艺过程中CO2的最大非能源利用排放源.分析了水泥工业的发展现状及其能源消耗状况,计算了水泥工业的CO2排放总量和分途径CO2排放量,介绍了水泥工业的废弃物利用和控制水泥工业CO2排放方面的一些具体技术,提出了一些针对水泥工业的CO2排放控制措施和新型富氧燃烧技术应用于水泥工业的设想.  相似文献   

4.
根据SO2减排控制指标体系中16个指标的概况和变化趋势,对中国2020年SO2排放量做了系统地分析和预测,得到了三组预测图像。中国SO2排放量与国民生产总值(GDP)及其年均增长率、总能耗量及其年均增长率、能源经济环境发展模式(能源消费弹性系数)等12项指标成正相关,与SO2治理强度等4项指标成负相关,当各个指标控制在合理的范围内时我国2020年SO2减排目标是可以实现的。提出了2020年实现SO2减排目标的10个约束条件,如果不满足约束条件时,我国2020年SO2削减目标是不能实现的。  相似文献   

5.
目前山东省年CO2排放量超过10亿t,电力行业的排放量占40%,因此,电力产业低碳化对山东省发展低碳经济具有举足轻重的作用.山东具有丰富的风能、生物质能等清洁能源,据规划,到2020年,清洁能源发电实现年减排CO210%;国内首座整体煤气化联合循环项目于山东投产,与相同装机容量燃煤电厂相比,其CO2排放量降低13.73%,若与碳捕捉和封存(CCS)技术联用,可实现CO2近零排放;山东省超临界/超超临界机组装机容量达932万kW,关停小机组600万kW,年减排CO22100万t.山东电力产业应因地制宜发展清洁能源发电,大力发展IGCC、超临界/超超临界等高效发电技术.同时,鼓励电力产业积极借助清洁发展机制(CDM),完善低碳路线.  相似文献   

6.
介绍了我国火电厂CO2排放特点,阐述了火电厂CO2减排技术、成本及影响因素,分析了CO2减排对中国未来能源和经济的影响。指出最适合CO2捕集技术发展的电厂类型是超超临界燃煤电厂和IGCC电厂,CO2减排技术的研发重点是大幅度降低成本和效率损失。  相似文献   

7.
中国2015年SO2排放总量宏观控制目标研究   总被引:1,自引:0,他引:1  
1980年中国SO2排放量为1160万吨,2005年为2549万吨,伴随节能减排政策的实施和s02治理投资的增加,到2010年我国SO2排放量将降至2300万吨(削减10%),仍位居世界第一位。在“十二五”期间,伴随人口、经济、能源的增长和发展模式的重大转变,我国2015年SO2排放总量面临微增长、不增长或减排的趋势。应用我国SO2减排宏观控制指标和模式预测了我国2015年SO2排放总量的4种图像或目标。提出了实现SO2排放总量削减10%目标的10条建议。  相似文献   

8.
流化床O2/CO2燃烧技术和化学链燃烧技术   总被引:3,自引:0,他引:3  
O2/CO2燃烧技术不仅能使分离收集CO2和处理SO2容易进行,还能减少NOx排放,是一种能够综合控制燃煤污染物排放的新型洁净燃烧技术。流化床O2/CO2燃烧技术将流化床和O2/CO2燃烧技术的优点结合起来,有可能取得更好的效果。化学链燃烧技术打破了自古以来的火焰燃烧概念,开拓了根除燃料型NOx生成、控制热力型NOx产生与回收CO2的新途径,是解决能源与环境问题的创新性突破口。介绍了流化床O2/CO2燃烧技术和流化床化学链燃烧技术的原理和研究现状,比较了它们之间的差别,展望了发展前景。  相似文献   

9.
中国2001年-2010年能源与环境不和谐图像及其控制对策研究   总被引:3,自引:3,他引:3  
国内外10余个国家多年的统计结果表明能源弹性系数正常值在0.5左右,但我国“十五”期间能源弹性系数基本上均超过1,最高达1.73,说明我国“十五”期间能源与环境的发展模式不够和谐。结合2004年-2005年上报国家环保总局环境工程评估中心审查的火电项目总装机容量3.77×108kW,多种方案预测了我国“十一五”期间能源、特别是火电的发展与大气污染物排放,结果表明“十一五”期间我国能源与环境的发展仍然很难和谐。为逐步实现能源与环境的和谐发展,必须加大产业结构调整力度,限制能耗总量增长过快趋势,使我国能源弹性系数逐步恢复到正常值。  相似文献   

10.
根据SO2减排控制指标体系中16个指标的概况和变化趋势,对中国2010年SO2排放量做了系统的分析和预测,得到了四组预测图像。提出了2010年SO2减排目标的约束条件是尽快恢复经济、能源、环境和谐发展模式,科学制订削减SO2排放量的规划,减缓国民经济发展速度,限制高硫煤开采,强化削减SO2排放量的优惠政策、税收政策和总量控制政策,大力发展循环经济与清洁生产,增加脱硫设施投资,提高SO2去除率。如果不满足约束条件,我国2010年SO2削减10%的目标是不能实现的。  相似文献   

11.
对中国2020年人口、国内生产总值、煤耗量和SO2排放量的发展情况进行了预测。预测结果表明,2020年中国人口总数可达到138858万人~139900万人,国内生产总值可达到78.29万亿元,能耗量达到42.83亿t,煤耗量达32.12亿t,SO2排放量达到1995万t。提出了中国2020年SO2排放量减排对策。  相似文献   

12.
氨法在燃煤电厂烟气治理中的应用和发展   总被引:1,自引:0,他引:1  
燃煤排放的CO2、SO2、NOx等气态污染物会造成酸雨、温室效应、臭氧层破坏等一系列的大气环境问题。减少和抑制燃煤电厂燃烧过程中污染气体的排放,是实现清洁生产和能源可持续发展的基本需要。氨法烟气治理技术作为电厂排放烟气处理的新兴技术,以其污染物脱除效率高、耗能小、二次污染低、脱除副产品可资源化等特点,得到了越来越多的关注,并已在部分燃煤电厂得到成功的应用。对氨法脱除烟气中气态污染物技术进行了分析和总结,并对其应用前景进行了分析和预测,指出了氨法烟气治理技术在燃煤电厂烟气处理方面具有良好的经济、社会和环保效益,并具有广阔的发展前景。  相似文献   

13.
Greenhouse gas (GHG) emissions from post-consumer waste and wastewater are a small contributor (about 3%) to total global anthropogenic GHG emissions. Emissions for 2004-2005 totalled 1.4 Gt CO2-eq year(-1) relative to total emissions from all sectors of 49 Gt CO2-eq year(-1) [including carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and F-gases normalized according to their 100-year global warming potentials (GWP)]. The CH4 from landfills and wastewater collectively accounted for about 90% of waste sector emissions, or about 18% of global anthropogenic methane emissions (which were about 14% of the global total in 2004). Wastewater N2O and CO2 from the incineration of waste containing fossil carbon (plastics; synthetic textiles) are minor sources. Due to the wide range of mature technologies that can mitigate GHG emissions from waste and provide public health, environmental protection, and sustainable development co-benefits, existing waste management practices can provide effective mitigation of GHG emissions from this sector. Current mitigation technologies include landfill gas recovery, improved landfill practices, and engineered wastewater management. In addition, significant GHG generation is avoided through controlled composting, state-of-the-art incineration, and expanded sanitation coverage. Reduced waste generation and the exploitation of energy from waste (landfill gas, incineration, anaerobic digester biogas) produce an indirect reduction of GHG emissions through the conservation of raw materials, improved energy and resource efficiency, and fossil fuel avoidance. Flexible strategies and financial incentives can expand waste management options to achieve GHG mitigation goals; local technology decisions are influenced by a variety of factors such as waste quantity and characteristics, cost and financing issues, infrastructure requirements including available land area, collection and transport considerations, and regulatory constraints. Existing studies on mitigation potentials and costs for the waste sector tend to focus on landfill CH4 as the baseline. The commercial recovery of landfill CH4 as a source of renewable energy has been practised at full scale since 1975 and currently exceeds 105 Mt CO2-eq year(-1). Although landfill CH4 emissions from developed countries have been largely stabilized, emissions from developing countries are increasing as more controlled (anaerobic) landfilling practices are implemented; these emissions could be reduced by accelerating the introduction of engineered gas recovery, increasing rates of waste minimization and recycling, and implementing alternative waste management strategies provided they are affordable, effective, and sustainable. Aided by Kyoto mechanisms such as the Clean Development Mechanism (CDM) and Joint Implementation (JI), the total global economic mitigation potential for reducing waste sector emissions in 2030 is estimated to be > 1000 Mt CO2-eq (or 70% of estimated emissions) at costs below 100 US$ t(-1) CO2-eq year(-1). An estimated 20-30% of projected emissions for 2030 can be reduced at negative cost and 30-50% at costs < 20 US$ t(-) CO2-eq year(-1). As landfills produce CH4 for several decades, incineration and composting are complementary mitigation measures to landfill gas recovery in the short- to medium-term--at the present time, there are > 130 Mt waste year(-1) incinerated at more than 600 plants. Current uncertainties with respect to emissions and mitigation potentials could be reduced by more consistent national definitions, coordinated international data collection, standardized data analysis, field validation of models, and consistent application of life-cycle assessment tools inclusive of fossil fuel offsets.  相似文献   

14.
Trading of greenhouse gas (GHG) emission reductions is an attractive approach to help producers implement cleaner treatment technologies to replace current anaerobic lagoons. Our objectives were to estimate greenhouse gas (GHG) emission reductions from implementation of aerobic technology in USA swine farms. Emission reductions were calculated using the approved United Nations framework convention on climate change (UNFCCC) methodology in conjunction with monitoring information collected during full-scale demonstration of the new treatment system in a 4360-head swine operation in North Carolina (USA). Emission sources for the project and baseline manure management system were methane (CH4) emissions from the decomposition of manure under anaerobic conditions and nitrous oxide (N2O) emissions during storage and handling of manure in the manure management system. Emission reductions resulted from the difference between total project and baseline emissions. The project activity included an on-farm wastewater treatment system consisting of liquid-solid separation, treatment of the separated liquid using aerobic biological N removal, chemical disinfection and soluble P removal using lime. The project activity was completed with a centralized facility that used aerobic composting to process the separated solids. Replacement of the lagoon technology with the cleaner aerobic technology reduced GHG emissions 96.9%, from 4972 tonnes of carbon dioxide equivalents (CO2-eq) to 153 tonnes CO2-eq/year. Total net emission reductions by the project activity in the 4360-head finishing operation were 4776.6 tonnes CO2-eq per year or 1.10 tonnes CO2-eq/head per year. The dollar value from implementation of this project in this swine farm was US$19,106/year using current Chicago Climate Exchange trading values of US$4/t CO2. This translates into a direct economic benefit to the producer of US$1.75 per finished pig. Thus, GHG emission reductions and credits can help compensate for the higher installation cost of cleaner aerobic technologies and facilitate producer adoption of environmentally superior technologies to replace current anaerobic lagoons in the USA.  相似文献   

15.
阐述了我国燃煤电厂CO2排放现状及趋势,将CO2减排技术分为捕集与封存两个部分进行讨论,介绍了目前主要的CO2捕集与封存技术及其研究进展,并分析了各种技术的特点及其在我国电力行业的应用前景。指出电厂位置、CO2捕集方案及封存方式三者之间是相互影响、相互制约的,其中CO2去向是关键因素,处于不同地理位置的电厂需根据具体情况选择相适应的CO2捕集与封存技术的组合。探讨了各种捕集与封存技术的应用前景,建议由国家相关部门或行业支持,建设国家或行业层面的工业化试验中心或试验台。  相似文献   

16.
在未来相当长的一段时间内,煤气化仍是大规模制取氢气的主要途径。目前,常规煤气化过程得到的是H2、CO和CO2为主的混合气,需要通过净化、变换和分离工艺才能得到洁净的氢气,工艺过程复杂。采用连续式超临界水反应装置,以质量分数为20%的水煤浆为反应原料,考察了Ca/C摩尔比和温度对褐煤制氢系统的影响。试验结果表明:Ca(OH)2不仅可以很好地固定气相中的CO2和硫化物,而且对煤气化过程也表现出较好的催化作用。反应温度600℃,压力为25MPa的条件下,与未加Ca(OH)2相比,Ca/C摩尔比为0.45时,气体中CO2的体积分数由50.7%降至1.0%,趋于完全固定;硫化物浓度由10 878mg/m3降至807mg/m3;H2的体积分数由32.4%增至73.3%。Ca(OH)2对煤气化的催化作用在高温下更加明显。  相似文献   

17.
Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance.The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85–174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010).The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas.  相似文献   

18.
Svidén  J.  Hedbrant  J.  Lohm  U.  Tarr  J. 《Water, Air, & Soil Pollution: Focus》2001,1(3-4):167-177
The type of energy system andindustrial structure of urban areas is veryimportant for the total amounts of Cu emitted.The total per capita emission for the New Yorkarea is estimated to be approximately 4 timeslarger than Stockholm municipality between 1900–1980. The latter was mainly the result of largedifferences in energy systems and industrialstructure. Hydro-electric power and non fossilfuels were important energy sources for Stockholmwhile coal was a much more significant fuel forthe New York area. Metal processing hascharacterised the industries of Stockholm whilethe New York area was a national centre forcopper and petroleum refining as well as thechemical industry. In both cases the estimated Cuemissions from fuel combustion and industrydecreased from 1900–1980. But in the case ofconsumption related emissions the time trendsdiffer between the two urban areas. In Stockholmend use was the largest category of Cu emissionsduring the whole time period studied. In the NewYork area consumption related emissions becamethe largest source of Cu emission in the 1950s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号