首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
我国废塑料油化技术的应用现状与前景   总被引:16,自引:1,他引:16  
介绍了我国废塑料油化技术的现状,对废塑料的热解法、热解-催化改质法、催化热解法3种基本方法进行了经济技术评价,对建立废塑料油化工厂的原料收集体系及运输距离、建厂规模、生产过程中存在的二次污染问题进行了分析,探讨了控制污染的方案,对制定相关的政策和法律提出了建议,探讨了具有我国特色的废塑料油化技术发展及应用之路。  相似文献   

2.
分析了利用混合废塑料改善道路沥青的可行性,并对废塑料聚合物沥青和废塑料、SBS复合聚合物沥青的感温性、高温性能和低温性能等进行了试验研究,为混合废塑料的资源再利用提供一种新的途径.  相似文献   

3.
相对于填埋、焚烧等传统的处理方法,废塑料热解技术不仅可以降低塑料处理过程中对环境的污染,而且可以将废塑料还原成燃料和化学品,从而有效地回收废物资源。但是废塑料热解反应通常需要很高的温度,使得热解法回收废塑料过程变得复杂。分析比较了热解回收废塑料相对于其他方法的优势,并系统地阐述了塑料热降解的机理。在综合国内外研究的基础上提出两种低温热解废塑料的方法:加催化热解和共热解。并利用塑料降解的自由基理论,分析了催化热解和共热解法降低塑料降解温度的机理。  相似文献   

4.
《化工环保》2008,28(4)
该发明公开了一种苯腈类化合物合成废气的处理方法及装置。利用该装置可低温催化处理苯腈类化合物合成工艺所产生的废气。制备用γ-Al2O3作为载体的Mn3O4蜂窝状氧化催化剂,并将其填充于处理装置的电加热催化还原管中,控制反应温度和反应时间,使废气中的氢氰酸吸附在蜂窝状γ-Al2O3载体上,在负载于载体上的MgO催化触媒作用下与废气中的水蒸气发生催化反应产生氨,实现废气的无害化处理。  相似文献   

5.
用城市污水处理厂剩余污泥制备脱硝催化剂   总被引:2,自引:0,他引:2  
以城市污水处理厂剩余污泥为原料,采用氧化锌和硝酸铁化学浸渍、高温热解制备脱除NOx的催化剂。用微型气固相催化反血装置考察了该催化剂在NH3选择性催化还原NO中的应用效果及寿命。实验结果表明:存350~450℃时的催化活性较高,在400℃时NO的最大转化率可达98.3%;催化剂的活性良好,经660min的活性测试,催化剂的活性只降低了约3%。对该催化刹进行了X射线衍射、热重和扫描电镜分析,分析结果表明,该催化剂含有丰富的金属元素及碳元袤,具有丰富的孔结构和晶体结构,而且表面及孔隙间负载的活性粒子较多,这些特征也表叫该催化刺具订良好的催化忡能。  相似文献   

6.
正"废塑料液化制油技术产油率可达到80%,固体废渣能进行无害化处理,整个过程不产生二恶英,无二次污染,实现了废塑料液态制油的技术突破。"在日前由中国石油和化学工业联合会组织召开的技术评估会上,与会专家宣读了对废塑料液化制油技术的评估意见。  相似文献   

7.
以过渡金属钒和钼的氧化物制得蜂窝型催化剂,采用扫描电子显微镜对催化剂表面组成进行了分析,并研究了其对一氯苯酚、二氯苯酚、三氯苯酚氧化分解的催化活性,考察了反应温度、空间速度对氧化过程的影响,通过比较氯苯酚类物质热解和催化氧化分解的产物,表明热解会产生二噁英等剧毒物质,而采用该种催化荆氧化时未检出二噁英等剧毒有害物质。  相似文献   

8.
讨论了不同钴离子掺杂比例和不同焙烧温度对Co Ox-Ti O2催化臭氧降解草酸性能的影响,并通过X射线衍射对不同条件下制备的催化剂进行了晶型的分析对比。通过实验可知,钴离子的掺杂有效提高了催化臭氧降解草酸的性能,最佳的Co/Ti摩尔掺杂比例为1/30。随着制备温度的升高,Co Ox-Ti O2催化剂的Ti O2晶型由锐钛矿相向金红石相过渡,焙烧温度为500℃时制备的混合晶型催化剂具有最好的催化效果。通过X射线荧光光谱分析和X射线光电子能谱分析的表征分析,钴元素较多分布在催化剂的表面,以Co Ti O3的形态存在;催化剂的钛元素有Ti3+和Ti4+两种价态,分别占28.33%和71.67%。  相似文献   

9.
信息与动态     
叶晶菁 《化工环保》2006,26(5):440-440
回收金属氧化物和矿物废渣的新方法,欧洲开始新一轮废塑料制柴油热潮,土壤细菌加剧含溴阻燃剂的毒性,  相似文献   

10.
已二酸生产副产物——混合二元酸的综合利用   总被引:1,自引:1,他引:0  
采用一水合硫酸氢钠作为催化剂,催化己二酸生产副产物——混合二元酸与甲醇反应合成混合二元酸二甲酯。优化工艺条件为:混合二元酸加入量0.1mol,无水甲醇加入量0.5mol,一水合硫酸氢钠加入量4.0g,环己烷加入量20mL,反应时间1.5h。合成混合二元酸二甲酯的酯化反应收率大于97%。经气相色谱检测,产物中酯的质量分数为98.91%。一水合硫酸氢钠可重复使用3次。  相似文献   

11.
The aim of this study was to investigate the possibilities of using a by-product (red mud) from alumina production as a catalyst for recovery of waste. The conversion of waste mineral oil (WMO) and waste mineral oil/municipal waste plastic (WMO/MWP) blends over red mud (RM), a commercial hydrocracking catalyst (silica–alumina), and a commercial hydrotreating catalyst (Ni–Mo/alumina) to fuel has been studied. The effect of the catalyst and the temperature on the product distribution (gas, liquid, and wax) and the properties of liquid products were investigated. In the case of hydrotreatment of WMO, the liquids obtained over RM at both 400° and 425°C had larger amounts of low-boiling hydrocarbons than that of thermal or catalytic treatment with hydrotreating catalyst. Gas chromatography and nuclear magnetic resonance analysis of the liquid products showed that RM had hydrogenation and cracking activity in hydrotreatment of WMO. In coprocessing of WMO with municipal waste plastics, temperature had an important effect as well as the amount of MWP in the blend and the catalyst type. The hydrocracking at 400°C produced no liquid product. In hydrocracking at 425°C, the product distribution varied with catalyst type and MWP amount. The commercial hydrocracking catalyst had more cracking ability in the conversion of WMO/MWP to liquid and gas fuel than RM. In the case of hydrocracking over RM, the largest amount of liquid having satisfactory quality was obtained only from the blend containing 20% MWP.  相似文献   

12.
A continuous system (feeding rate >1 kg/h) consisting of thermal dechlorination pre-treatment and catalytic pyrolysis with Fe-restructured clay (Fe-RC) catalyst was developed for feedstock recycling of PVC-containing mixed plastic waste. The vented screw conveyor which was specially designed for continuous dechlorination was able to achieve dechlorination efficiency of over 90 % with a feedstock retention time longer than 35.5 min. The chlorine content of the pyrolytic oil obtained after dechlorination was in the range of 6.08–39.50 ppm, which meet the specification for reclamation pyrolytic oil in Japan. Fe-RC was found to significantly improve the yield of pyrolytic oil (achieved to 83.73 wt%) at the optimized pyrolysis temperature of 450 °C and catalyst dosage of 60 g. With the optimized parameters, Fe-RC showed high selectivity for the C9–C12 and C13–C19 oil fraction, which are the major constituents of kerosene and diesel fuel, demonstrating that this catalyst can be applied in the pyrolysis of mixed plastic wastes for the production of kerosene and diesel fuel. Overall, the continuous process exhibited high stability and consistently high-oil yield upon reaching steady state, indicating its potential up-scaling application in the industry.  相似文献   

13.
Dehalogenation is a key technology in the feedstock recycling of mixed halogenated waste plastics. In this study, two different methods were used to clarify the effectiveness of our proposed catalytic dehalogenation process using various carbon composites of iron oxides and calcium carbonate as the catalyst/sorbent. The first approach (a two-step process) was to develop a process for the thermal degradation of mixed halogenated waste plastics, and also develop dehalogenation catalysts for the catalytic dehydrochlorination of organic chlorine compounds from mixed plastic-derived oil containing polyvinyl chloride (PVC) using a fixed-bed flow-type reactor. The second approach (a single-step process) was the simultaneous degradation and dehalogenation of chlorinated (PVC) and brominated (plastic containing brominated flame retardant, HIPS–Br) mixed plastics into halogen-free liquid products. We report on a catalytic dehalogenation process for the chlorinated and brominated organic compounds formed by the pyrolysis of PVC and brominated flame retardant (HIPS–Br) mixed waste plastics [(polyethylene (PE), polypropylene (PP), and polystyrene (PS)], and also other plastics. During dehydrohalogenation, the iron- and calcium-based catalysts were transformed into their corresponding halides, which are also very active in the dehydrohalogenation of organic halogenated compounds. The halogen-free plastic-derived oil (PDO) can be used as a fuel oil or feedstock in refineries.  相似文献   

14.
 Recycle technology for waste plastics containing polyvinyl chloride (PVC) has been developed in the Hokkaido National Industrial Research Institute for the production of solid and liquid fuel, and has established a recycling process which includes a dechlorination process for PVC plastics, and a two-stage catalytic pyrolysis process for plastics using zeolite catalysts. The dechlorination equipment consists of a two-axis screw extruder with a heating element, which can remove chlorine up to 99.9 wt. % from PVC containing plastics as hydrogen chloride. The product had about 44 000 kJ/kg calorific value and was fed into the next oil production process, although it could also be used as a solid fuel. Natural and synthetic zeolite were used as catalysts for the two-stage catalytic process, which produced a light oil with a boiling point which was between those of kerosene and gasoline. The yield of this oil reached 82 wt. %. The chemical type was analyzed using liquid chromatography, and was found to have many aromatic compounds. These technologies make it possible to produce a nonpolluting, high-calorie solid fuel and a liquid fuel very efficiently. Received: July 19, 2000 / Accepted: September 21, 2000  相似文献   

15.
Tyre recycling has become a necessity because of the huge piles of tyres that represent a threat to the environment. The used tyres represent a source of energy and valuable chemical products. Waste tyres were pyrolysed catalytically in a batch reactor under atmospheric pressure. Calcium carbide was used as a catalyst to explore its effect on pyrolysis product distribution. The effect of temperature, amount of catalyst and time on the yields of the pyrolysed products was investigated. Char yield decreased with increase of pyrolysis temperature while total gas and liquid yields increased. The liquid fraction was obtained with boiling point up to 320 °C. The physical and chemical properties of the pyrolysed products obtained were characterized. The catalytic pyrolysis produced 45 wt.% aromatic, 35 wt.% aliphatic and 20 wt.% of polar hydrocarbons. The distillation data showed that ∼80% of oil has boiling point below 270 °C which is the boiling point for 50% of distilled product in commercial diesel oil. The oil fraction was found to have high gross calorific value; GCV (42.8 MJ kg−1). Its Specific gravity, viscosity, Kinematic viscosity, freezing point and diesel index were also within the limits of diesel fuel. The char residues were studied to investigate their characteristics for use as a possible adsorbent. Surface area of char before and after acid demineralization was determined to determine the adsorptive features for waste water treatment.  相似文献   

16.
The leather industry is an industry which generates a large amount of solid and liquid wastes. Most of the solid wastes originate from the pre-tanning processes while half of it comes from the fleshing step. Raw fleshing wastes which mainly consist of protein and fat have almost no recovery option and the disposal is costly. This study outlines the possibility of using the fleshing waste as an oil source for transesterification reaction. The effect of oil/alcohol molar ratio, the amount of catalyst and temperature on ester production was individually investigated and optimum reaction conditions were determined. The fuel properties of the ester product were also studied according to the EN 14214 standard. Cold filter plugging point and oxidation stability have to be improved in order to use the ester product as an alternative fuel candidate. Besides, this product can be used as a feedstock in lubricant production or cosmetic industry.  相似文献   

17.
Plastic wastes disposal can be done by various methods such as landfill, incineration, mechanical and chemical recycling but these are restricted due to some environmental, economic and political problems. Conversion of these plastic wastes into valuable products by degradation is the best option. In the present work waste low density polyethylene was degraded by catalytic process using CaO/SiO2 as mixed catalyst. The conditions for catalytic degradation were optimized for the production of maximum liquid fuel. It was found that the yield of liquid product was up to 69.10 wt% at optimum condition of temperature (350 °C), time (90 min) and catalyst feed ratio (1:0.4). Liquid fuels obtained from the catalytic degradation were further separated into various fractions by fractional distillation. Composition of liquid fuels was analyzed by FTIR spectroscopy, which showed that the liquid fuels mostly consist of paraffinic and naphthenic hydrocarbons. Different fuel properties such as density, specific gravity, American petroleum institute gravity (API gravity), viscosity, kinematic viscosity, refractive index, refractive intercept and flash point of both the parents and various fractional fuels were determined. All the properties of the obtained fuels are in close agreement with the fuel properties of gasoline, kerosene and diesel. It was found that our catalyst is very much efficient in terms of time, degradation temperature and amount of catalyst.  相似文献   

18.
Thermal cracking of oils from waste plastics   总被引:2,自引:0,他引:2  
Thermal cracking of decomposed waste plastic oil produces a good yield of olefins. The solvent extraction of such waste plastic oil seems to be efficient for increasing gas yields and recycling monomers. To assess the potential of monomer recovery from municipal waste plastics, the oils were cracked using a laboratory-scale quartz-tube reactor. The waste plastic oils were provided by two commercial plants of the Sapporo Plastic Recycle Co. and the Dohoh Recycle Center Co. in Japan. A model waste plastic oil made in a laboratory was also examined. Yields of ethene, propene, and other products were measured at different temperatures. Two-step pyrolysis reduces coking compared with the direct thermal degradation of plastics. The raffinates from waste plastic oils extracted by sulfolane were also cracked. The primary products were almost the same as those from nontreated oils. The maximum total gas yield was 78wt%–85wt% at 750°C, an increase of about 20wt% compared with that of nonextracted oil. Solvent extraction removes stable aromatic hydrocarbons such as styrene, which is more coked than cracked.  相似文献   

19.
Catalytic coprocessing of model and waste plastics with light Arabian crude oil residue was investigated using NiMo/Al2O3, ZSM-5, FCC, and hydrocracking catalysts. Reaction systems that were studied included low density polyethylene (LDPE), high density polyethylene (HDPE), polystyrene (PS), and polypropylene (PP). A series of single (plastic/catalyst) and binary (plastic/resid/catalyst) reactions were carried out in a 25-cm3 micro autoclave reactor under different conditions of weight and type of catalyst, duration, pressure, and temperature. The optimum conditions selected for our work were: 1% catalyst by weight of total feedstock weight, 60min reaction time, 8.3Mpa of H2, and 430°C. The product distribution for the binary system using plastic and petroleum residue provided some encouraging results. High yields of liquid fuels in the boiling range of 100°–480°C and gases were obtained along with a small amount of heavy oils and insoluble material such as gums and coke. In general, this study helps to demonstrate the technical feasibility of upgrading both waste plastics and petroleum resid, as well as an alternative approach to feedstock recycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号