首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
导水裂隙带高度是水体下安全采煤的主要依据,本文通过数值计算、相似材料模拟、规程预测和工程类比等方法,对高头窑煤矿水多湖川和大哈他土沟河下浅埋煤层开采时导水裂隙带高度进行了预测研究,结果表明:几种方法预测结果有一定的误差,综合工程类比结果,高头窑煤矿水多湖川和大哈他土沟下采煤时裂采比定为15。由于高头窑煤矿2-3煤层上覆基岩段厚度较薄,根据三下开采规程,煤层开采需要进行安全限采控制,采高h≤H/19,以达到控制导水裂隙带高度的目的,实现河下采煤的安全开采。  相似文献   

2.
在大型水体下顶水采煤,一方面要确保煤矿井下安全生产,同时要保护地表水资源不被破坏。基于峰峰矿区小屯矿的地质采矿条件,在分析与评价上覆岩层结构的基础上,选取水体下11个计算特征点,探讨上覆岩层破坏高度、防水安全煤岩柱及安全煤岩柱最小富余尺寸,绘制各类等值线图。采用概率积分法,从下沉、倾斜、水平变形和裂缝深度等方面,研究分析顶水开采后水体底部所受的采动影响。结果表明,在特定的地质采矿条件下,各工作面开采以后,上覆岩层中导水裂隙带发育的最大标高与基岩顶部之间具有较厚的岩柱,导水裂隙带不会波及到地表水体,水体底部的地表移动变形较小,不会影响到矿井安全生产,在大型水体下顶水采煤是安全可行的。  相似文献   

3.
大采高综采技术是厚煤层开采工艺的重要发展方向,越来越多的被采用,矿压事故在矿山生产安全事故中占有较大比例,有效掌握矿压规律,采用合理生产工艺是采矿生产过程中必须认真考虑的问题。大采高综采工作面采场顶板跨度大、高度高,矿山压力复杂,矿压显现规律特殊,管理难度大。针对某煤矿9、10号煤层大采高综采工作面顶板坚硬特性,为掌握类似地质条件下大采高工作面矿压显现规律,作者从理论分析入手,采用相似模拟实验方法,经过对模拟实验数据进行研究分析,得出了本矿区特定坚硬顶板条件下大采高工作面矿压显现规律,认为类似地质条件大采高工作面,顶板垮落易造成动力冲击,顶板破坏形式主要是拉断和剪断,最大压力值发生在工作面中部前方,采空区积水的影响情况和地表的沉陷状况,还需通过其他方法进行进一步的分析、论证,提出了针对类似围岩条件采煤工作面的安全技术和管理措施。  相似文献   

4.
漏风对煤自燃有重要影响,研究漏风形成机制对工作面采空区防火具有重要的作用。针对采空区瓦斯抽采、上覆围岩裂隙发育对采空区漏风影响问题,以沙曲矿沿空留巷综放工作面为研究背景。根据采空区上覆煤岩特性选择经验公式计算采空区裂隙发育高度,分析了沿空留巷侧采空区上覆裂隙发育,现场实测了沿空留巷压埋管及高位钻孔中气体体积分数,并根据实测参数利用数值模拟分析了瓦斯抽采条件下采空区风流流场变化。结果表明:上覆裂隙成为采空区漏风通道,导通距离在27.2~37.2 m;在沿空留巷侧采空区回采距离100m,其氧气体积分数在10%以上,验证了采空区漏风去向;模拟结果显示,沿空留巷侧采空区立体空间范围内氧气体积分数均达到10%以上,模拟结果与实测基本保持一致。最终确定瓦斯抽采条件下沿空留巷的布置及煤岩裂隙发育是形成漏风通道的主要原因。  相似文献   

5.
薄煤层采煤工作面顶板穿层钻孔瓦斯抽采试验研究   总被引:1,自引:0,他引:1  
以凤凰煤矿1402采煤工作面为工程应用背景,针对煤层薄、瓦斯含量高、透气性差、地质条件差的特点,运用岩层移动理论,研究了采煤工作面采空区大流量、高浓度卸压瓦斯的运移路径和富集区域;借鉴了邻近煤矿瓦斯抽采经验,选择顶板穿层钻孔瓦斯抽采方法作为主要矿井瓦斯抽采方法之一,试验了该方法的合理瓦斯抽采参数;提高了采煤工作面瓦斯抽采率,消除了采煤工作面瓦斯积聚现象。  相似文献   

6.
为了掌握高瓦斯沿空留巷采空区遗煤自燃危险区域分布规律,指导工作面防灭火工作。采用数值模拟的方法,以首次采用沿空留巷技术的乌兰矿工作面为实例,模拟分析采空区漏风及氧化带三维分布规律。使用单因素分析法,分别模拟高位钻孔、上隅角埋管及地面钻孔抽采对采空区氧气浓度分布的影响。结果表明:多种瓦斯抽采措施下,工作面及沿空留巷均向采空区漏风,导致氧化带范围扩大,但不同抽采措施导致氧化带扩大的程度不同,高位钻孔抽采最弱,上隅角瓦斯抽采次之,地面钻孔抽采最强。沿空留巷附近及上覆采空区供氧时间长,自然发火危险性高。  相似文献   

7.
为了掌握高瓦斯沿空留巷采空区遗煤自燃危险区域分布规律,指导工作面防灭火工作。采用数值模拟的方法,以首次采用沿空留巷技术的乌兰矿工作面为实例,模拟分析采空区漏风及氧化带三维分布规律。使用单因素分析法,分别模拟高位钻孔、上隅角埋管及地面钻孔抽采对采空区氧气浓度分布的影响。结果表明:多种瓦斯抽采措施下,工作面及沿空留巷均向采空区漏风,导致氧化带范围扩大,但不同抽采措施导致氧化带扩大的程度不同,高位钻孔抽采最弱,上隅角瓦斯抽采次之,地面钻孔抽采最强。沿空留巷附近及上覆采空区供氧时间长,自然发火危险性高。  相似文献   

8.
为了进一步探究高抽巷抽采瓦斯效果,对高抽巷的最佳抽采层位进行分析。以常村矿为例,基于紧贴实际采空区碎胀系数分布的“O”型圈理论,依据采空区瓦斯的运移规律,运用FLUENT软件加载自定义UDF对采空区瓦斯分布进行数值模拟,从上隅角瓦斯浓度与抽采浓度2方面,对不同层位高抽巷的抽采效果进行分析,确定高抽巷的最佳层位,并用现场测试数据对数值模拟结果进行验证。研究结果表明:模拟计算结果与现场实测数据基本吻合,所提出的高抽巷最佳抽采层位的确定方法可有效应用于实际;合理的抽采层位不仅能够有效地降低上隅角瓦斯的浓度,而且能够提高抽采的效率。  相似文献   

9.
(上接第4期) 5月2日7时05分.黑龙江省鹤岗市峻源二煤矿井下采煤工作面发生特大透水事故.造成死亡13人.直接经济损失1740万元。事故直接原因:该矿越界进入已关闭的原峻德矿多种经营公司一井范围复采17#煤层采煤工作面放顶后.采空区上覆岩石发生冒落.在上隔角与地表塌陷坑冒通.地表塌陷坑积水及上覆冲击层的水和泥沙溃入井下,导致事故发生。  相似文献   

10.
为提高厚煤层采空区定向钻孔的瓦斯抽采效率,针对山西某高瓦斯矿井采煤工作面,采用理论分析和FLUENT数值模拟相结合的方法研究采动裂隙分域演化特性,提出覆岩裂隙场分域准则,确定定向钻孔布置区域与核心抽采布置范围,并在采空区现场开展定向钻孔分域抽采瓦斯试验。结果表明:破断裂隙密集区内,岩层断裂穿层裂隙发育较明显、瓦斯聚集显著,且钻孔稳定性高,是布置定向钻孔的最佳区域;并将与回风巷中心线水平距离3~13 m,与煤层顶板垂直距离10~18 m的区域设定为核心抽采区域。定向钻孔分域抽采试验中,单孔抽采瓦斯体积分数平均提升22.355%,单孔瓦斯抽采纯量平均提升1.295 m3/min,该结论验证了厚煤层采空区定向钻孔分域抽采方法的实用性与合理性。  相似文献   

11.
周军 《安全与健康》2011,(19):30-31
(接上期)31.容易发生一氧化碳中毒的行业有哪些(1)煤炭采选业:岩巷爆破、煤巷爆破、采煤打眼、水力采煤、机械采煤、采煤装载、采煤支护、井下通风。(2)黑色金属矿采选业:黑色矿炮。(3)有色金属矿采选业:有色矿炮。(4)建筑材料及其他非金属矿采选业:土砂石炮采、化学矿炮采、非金属矿  相似文献   

12.
为了研究和解决西铭矿在生产中由于瓦斯抽采方法的不同可能引起采空区自燃以及瓦斯爆炸等重大安全隐患问题,构建了高位巷、埋管和高低位钻孔瓦斯抽采方法下的非均质多孔介质三维模型。利用非线性渗流定律、通用控制方程和自定义的函数进行解算,结果表明:高位巷、高低位钻孔抽采流量与抽采氧气浓度近似呈正比函数关系,埋管抽采流量与氧化带宽度呈指数函数关系;高位巷、高低位钻孔随着抽采流量的增加抽采效率反而降低,抽采总量增加,埋管抽采位置在距工作面35m处、抽采流量为20m3/min能很好解决上隅角瓦斯超限问题。根据模拟结论:采用立体联合瓦斯抽采方法既能满足抽采要求又能有效控制采空区自燃现象。  相似文献   

13.
为了解决目前采用的直立型地面钻井抽采范围小、工作面所需钻井数量多及瓦斯流量和浓度偏低的问题,基于屯兰矿12507工作面Ⅱ段工程地质情况,提出地面“L”型钻井提高瓦斯抽采效率的理论和实践研究。通过PFC3D颗粒流离散元数值模拟软件对工作面覆岩采动影响进行模拟,得到采动影响下的覆岩结构、裂隙和孔隙率变化。研究结果表明:屯兰矿12507工作面Ⅱ段的垮落带高度为15.87 m,裂隙带高度为49.46 m,采空区上方15~50 m、沿倾向方向距离采空区边界20~100 m的范围内裂隙较发育,孔隙率高且稳定。在屯兰矿12507工作面Ⅱ段进行工程实践,得到地面“L”型钻井在抽采效率、工作面上隅角瓦斯治理及采空区瓦斯有效利用方面优于普通地面钻井抽采,抽采系统工作149 d瓦斯抽采浓度平均为52.52%,抽采纯量平均为9.48 m3/min,上隅角瓦斯浓度平均为0.21%,降低了矿井瓦斯灾害出现的风险并提高了煤层气的利用。  相似文献   

14.
为研究高瓦斯易自燃煤层不同供风量、高抽巷抽采流量、低抽巷抽采流量3因素对采空区自燃“三带”分布影响规律,选取阳煤五矿8406工作面为研究对象,在数值模拟研究基础上,采用Design Expert软件进行Box Behnken试验设计,构建采空区氧化升温带宽度在3因素、3水平条件下的二次回归响应曲面模型,并对不同条件下采空区氧化升温带宽度进行预测与分析。结果表明:二次回归方程P值为0.001 6,预测模型显著,模型的失拟项为0.606 3,不显著,回归方程具有统计学意义;当供风量为1 500~2 000 m3/min,低抽流量为450~650 m3/min,高抽流量为100~200 m3/min时,对氧化升温带宽度一次项重要度排序为C(高抽巷抽采流量)>A(供风量)>B(低抽巷抽采流量),二次项重要度排序为AC(供风量和高抽巷抽采流量)>AB(供风量和低抽巷抽采流量)>BC(低抽巷抽采流量和高抽巷抽采流量),且AB,AC,BC之间均无交互作用。  相似文献   

15.
针对高抽巷抽采瓦斯可能诱发的采空区自燃问题,以大佛寺煤矿40108工作面构建采空区气体渗流模型,分析了不同垂距和平距下高抽巷抽采瓦斯时对采空区自燃危险性的影响。结果表明:高抽巷与煤层顶板的垂距越大,氧化升温带的宽度越大,采空区自燃危险性越高。高抽巷距回风巷平距为30m时,氧化升温带的宽度最小,采空区自燃危险性最低。依据研究结论,结合高抽巷抽采瓦斯时的层位要求,分析得出大佛寺煤矿40108工作面高抽巷最佳位置为距煤层顶板垂距30m,距回风巷平距30m处。  相似文献   

16.
张睿卿    唐明云    戴广龙    申茂良   《中国安全生产科学技术》2016,12(1):102-106
针对采空区非线性渗流模型中颗粒平均粒径的取值问题,利用专业的流体力学软件fluent对刘庄矿151305工作面采空区不同颗粒粒径下的漏风流场进行了模拟,以此确定合适的平均粒径,并利用该采空区颗粒平均粒径对工作面供风量及采空区漏风的影响进行了模拟与分析。结果表明,采空区内平均粒径的取值对工作面风量分布影响较大,瓦斯抽采负压也相差一个数量级;通过与实测工作面风量及实际的瓦斯抽采负压作对比,当采空区颗粒平均粒径取0.1 m时,模拟结果与现场实际最为吻合;工作面供风量越大,采空区的漏风量也越大,两者为二次函数关系。该研究方法为工作面采空区漏风流场数值模拟提供了理论指导。  相似文献   

17.
为研究塔山矿采空区不同治理方法效果,解决特厚煤层综放面瓦斯涌出量大及回采期间上隅角异常涌出的问题,采用地面立孔、L型钻孔和高抽巷瓦斯抽采技术治理8204综放面采空区瓦斯。通过对工作面采动覆岩影响规律和地面钻孔、高抽巷位置对瓦斯抽采效果的影响进行模拟,确定不同瓦斯治理方式的合理布置参数。在工作面回采过程中,对瓦斯抽采参数进行现场实测。结果表明,高抽巷平均瓦斯抽采体积分数为37%,明显高于L型钻孔的20%,地面钻孔的2.5%;L型钻孔抽采瓦斯纯量最低,平均为7 m~3/min,而地面钻孔为22 m~3/min,高抽巷为33 m~3/min,都达到治理采空区瓦斯的效果。从施工、投资等因素考虑,得出结论:塔山矿区采用地面立孔和高抽巷治理瓦斯效果最好。  相似文献   

18.
基于降低采煤工作面瓦斯浓度和减少采空区瓦斯涌出的重要性,采用岩石破裂过程分析软件( RFPA2D)对鹤壁六矿21151顶分层工作面上覆岩层随工作面推进的运动情况进行了数值模拟.从中获取了上覆岩层的运动信息,得到了顶板由变形到损坏的全过程及损坏规律,并用经验公式对覆岩裂隙带高度进行了计算,综合判定工作面上覆岩层的裂隙带高度为12.3~44m.高位钻场抽采参数优化后,平均抽采量达到6.79 m3/min.  相似文献   

19.
为研究大同矿区特厚煤层采出空间大和远距离侏罗系煤层群重叠煤柱共同作用下的强矿压显现机制,采用通用离散元程序(UDEC)数值模拟方法,分析重叠煤柱作用下的工作面采动应力规律。应用高精度微震监测技术,得到侏罗系煤层群开采影响下的综放工作面覆岩运动与矿压显现的关系。研究表明,工作面回采至侏罗系煤柱对应区域时,工作面超前支承压力比在非煤柱区域提高了25%~33%;侏罗系煤柱重叠区域,在"煤柱-覆岩联动"和"煤柱-采动应力耦合"共同作用下,工作面矿压显现更为强烈;在临近采空区和侏罗系覆岩共同作用下,沿空巷道矿压显现强烈。工作面开采扰动、临近采空区覆岩运动和侏罗系重叠煤柱的耦合作用,是石炭系综放工作面矿压显现剧烈的根本原因。用提出的基于地面钻孔压裂重叠煤柱弱化的强矿压显现顶板控制技术,可削弱重叠煤柱对工作面开采的影响,减轻特厚煤层综放开采采场矿压的显现强度。  相似文献   

20.
为了分析裴沟矿31采区的煤炭开采对上部魔洞王水库的影响,以及评价水体下开采的安全性,首先分析了岩土体材料在三轴压缩试验中表现出来的应变软化现象,认为岩石峰后的软化能够说明覆岩破坏后的力学特性;然后介绍了FLAC3D中应变软化模型;最后分别建立Mohr—Coulomb理想弹性模型和应变软化模型的数值模型,针对工作面推进过程中覆岩移动破坏的特征以及顶板导水裂隙带发育规律,分析了两者计算结果的差别,计算结果表明:应变软化模型对覆岩移动破坏特征的计算更加准确,能够说明工作面推进过程中覆岩移动规律,通过其计算得到的导水裂隙带高度的预计对水体下采煤的安全性评价有一定的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号