首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
为揭示制曲车间粉尘运移规律及其分布特征,以某酒厂制曲车间拆曲工艺区为研究背景,基于高斯模型建立制曲车间粉尘质量浓度方程,运用Fluent软件数值模拟自然通风条件下,不同尘源位置及数量等多种工况的制曲车间粉尘扩散过程,并相互验证粉尘质量浓度的理论计算值、数值模拟结果与实测数据,得到不同工况下制曲车间粉尘质量分布及运移时空演变特征。研究结果表明:发酵仓内尘源位于不同位置时,粉尘主要集中于作业面附近,其中,仓内近窗作业与中部作业相比较,前者造成发酵仓粉尘高质量浓度区域更广,全尘峰值质量浓度在200 mg/m3附近上下波动;与走道相对位置不同的发酵仓进行近窗作业时,走道粉尘主要集中于作业仓附近,多个发酵仓同时作业与单仓作业相比,多尘源会对走道粉尘分布产生叠加效应,其中,相邻仓作业时走道粉尘污染最严重,全尘质量浓度高达75 mg/m3以上;单仓、相邻仓、相对仓作业工况下,分别在作业时长为525、470、498 s前后,粉尘已扩散至整个走道。  相似文献   

2.
工程爆破常在开放空间中进行,因其产生的粉尘会对爆源周围环境造成影响,所以受到了广泛关注。为阐明工程爆破产生的粉尘的时空分布特征,基于相似性原理建立了二维几何模型,使用ANSYS Fluent仿真软件对爆破粉尘在不同环境风速下的时空分布进行了数值模拟。结果表明:在静风状态下,近尘源区域中的爆破粉尘自由缓慢扩散,空间分布范围小;当环境风速分别为1、2.45、5、10 m/s时,粉尘粒子均随气流扩散,且风速越大,粉尘粒子运移越快,空间分布范围越广;在近壁面区,受壁面摩擦影响,气流形成一涡旋卷吸区,涡旋卷吸区内粉尘浓度高,停留时间长,是高污染区,也是爆破粉尘防治的着力点。  相似文献   

3.
为了研究大采高综采工作面在多工序、多尘源情况下的呼吸带范围粉尘质量浓度分布,运用Fluent软件对井下大采高综采工作面风流分布、粉尘运移、呼吸带高度范围粉尘质量浓度分布进行模拟研究,并结合现场实测对比分析.结果 表明,采煤机械设备的影响使得工作面空间体积发生突变,造成采煤机附近局部风速增大,并且在采煤机下风侧附近产生3 m/s的湍流.湍流使得运移到此处的粉尘发生扩散,致使湍流下风侧呼吸带粉尘质量浓度剧烈升高十几倍.根据实测数据与模拟结果对比分析:采煤机下风侧10~20 m是粉尘防治的重要区域;而在采煤机下风侧30 m以后的范围,巷道中心部位呼吸带高度粉尘受风流影响漂浮在空中而不易沉降,导致粉尘质量浓度居高不下,此范围也是重点防尘区域.  相似文献   

4.
TBM掘进过程中产生大量粉尘,为了掌握粉尘的分布规律并优化除尘系统,以敞开式TBM为例,采用数值计算方法研究不同除尘风管位置,不同除尘风速和不同掘进面产尘量下的洞内粉尘浓度分布规律。研究结果表明:敞开式TBM隧道施工过程中,掘进面至除尘风管区域质量粉尘浓度较高,在除尘风管口后方区域下降到 2 mg/m3以下;除尘风管布置在距掘进面30 m位置处时,洞内沿程粉尘含量相对较大,除尘风管布置在距掘进面20 m位置处时洞内沿程及TBM支护区域粉尘含量相对较小;排风风速为15 m/s时,敞开式TBM支护区域粉尘质量浓度最小,排风风速为30 m/s时,该区域粉尘质量浓度最大;掘进面产尘量越大,洞内沿程及敞开式TBM支护区域粉尘质量浓度越大,不同产尘量下洞内粉尘浓度均在除尘风管后方达到规范限值以下。  相似文献   

5.
为降低炼钢电炉车间粉尘对作业人员的危害,通过对某钢铁厂电炉车间实际情况为研究背景,利用现场调研与数值模拟对炼钢电炉车间的粉尘空间分布以及粒子运动规律进行分析。在采用FLUENT粒子流场综合计算的理论基础上,利用DPM颗粒运动轨道中的离散运动模型,加载粒子相,并综合计算两相流,最终得到粒子的运动规律。通过分析逃逸扩散粉尘在不同空间分布中的情况以及扩散粉尘颗粒物逃逸率的情况,综合分析对车间环境造成的影响。结果表明:粉尘粒径越小,对气流的跟随性越好,排风口对粉尘的捕集效果越差;集气罩的安装位置距离污染源越近捕集效果越好;集气罩的尺寸越大对粉尘的捕集效果越好。  相似文献   

6.
为降低微细粉尘危害,实现作业场所内的有效控尘、防尘,在矩形、拱形模拟巷道内采用网格布点法布置测点,调整风机风速法进行试验,并运用Gambit建模、Fluent开展数值模拟分析。结果表明:当尘源以10 mg/s的速率喷尘时,尘粒自由弥散,巷道中轴线处粉尘浓度小于壁面边缘处;当调节风速为1 m/s时,中轴线处与壁面边缘处浓度基本相等;当尘粒自由弥散时巷道壁的黏滞作用对粉尘扩散和分布起主导作用,且风速是影响微细粉尘悬浮状态的主要因素;降低巷道内微细粉尘浓度的方法主要包括合理设计环境风速和提高巷道壁面光滑性,减小壁面对微细粉尘的黏滞作用。  相似文献   

7.
采场爆破粉尘运移规律的Fluent数值模拟   总被引:2,自引:0,他引:2  
在对爆破烟尘源及其特征分析的基础上,以西石门铁矿南二采区为研究背景,运用Fluent软件通过气固两相流数值模拟方法对爆破后粉尘的分布及扩散规律进行研究,得出在现有条件下爆破粉尘的运移规律.采场爆破后很快产生大量粉尘且浓度较高,粉尘的运移受风流流场影响较为明显.在现有通风条件下,粉尘的净化主要靠重力沉降,而难以沉降的呼吸性粉尘的排出则需要较长时间.这不利于生产,亟须改善通风条件或采取其他措施较快速降低爆破粉尘浓度.数值模拟结果与现场测量结果基本一致,爆破产尘量大,排尘耗时久.  相似文献   

8.
综采工作面空气幕隔尘理论研究   总被引:1,自引:0,他引:1  
空气幕隔尘是综采工作面一项新的防尘技术.运用平面射流理论,针对综采工作面空间特点及风流特性,建立空气幕隔尘的数学模型,从理论上就隔尘空气幕两侧粉尘浓度分布和变化规律、空气幕隔尘效率及其与相关参数的关系进行深入研究.结果表明:1)司机侧粉尘浓度朝风流方向按指数规律不断增大,煤壁侧粉尘浓度则朝风流方向按指数规律不断下降,且两侧粉尘浓度变化速度快慢与空气幕射流卷吸风量大小有关,卷吸风量越大,两侧粉尘浓度变化速度越快;2)空气幕射流卷吸风量是影响其隔尘效果主要因素,卷吸风量越小,空气幕隔尘效率越高;3)在确定空气幕出口风速时,为保证其隔尘效率,应根据现场实测,取满足控制呼吸性粉尘所需的最小风速.  相似文献   

9.
风速对露天矿采装工作面的可吸入颗粒物的聚并效应有显著影响,为了探究不同风速下PM10聚并效果,分析质量浓度变化机理,构建采装机械与外流域三维模型,利用Fluent软件针对新疆某露天采装面实际情况,模拟不同风速下外流场以及粉尘分布规律。结果表明:流经工作面的风流因采装设备的遮挡,在采装车厢内部与下风侧附近形成低速旋涡,使得此范围粉尘质量浓度较高;外界风速越大,高浓度粉尘区域越随风沿下风侧向后运移;随着扩散时间增加,外界风速越大,车厢附近的浓度降低得越多,沿程扩散距离越远,在采装车厢下风侧1~2 m是粉尘重点防护区域;外界风速越大,车厢附近涡流结构越复杂,PM10的聚并效应增强,颗粒数量减小从而导致质量浓度大幅下降。  相似文献   

10.
为改善破碎车间内部粉尘浓度超标的现状,掌握石棉选矿厂破碎车间内粉尘浓度的分布规律,依据气固两相流、气溶胶力学等相关理论,建立粉尘在空气内运动、扩散及沉降方程。以西南某石棉选矿厂破碎车间为研究背景,采用计算机流体力学的离散相模型,运用Fluent软件对石棉破碎车间粉尘质量浓度分布进行数值模拟,并与现场粉尘浓度实测数据比较分析。研究表明:模拟结果和实测数据相吻合;粉尘集中在胶带输送室和破碎机给料口附近,全尘浓度最大为86.24 mg/m3,纤维浓度最高为12.46 f/mL;粉尘浓度随着距破碎机入口的距离增加而逐渐变小;地面呼吸带高度粉尘浓度相对处于较低水平,维持在9~16 mg/m3区间。  相似文献   

11.
针对综采工作面粉尘浓度居高不下的问题,基于风流场和颗粒场特点,建立三维k-ε湍流模型,并利用混合差分格式和基于同位网格的SIMPLE算法作为风-尘颗粒两相流的数值解法,利用FLUENT软件进行数值模拟。通过与现场实测数据对比,发现模拟结果与实测数据相吻合。研究结果表明,最大风速可达入口风速的1.67倍,并沿程形成了长达15 m的高速风流带;从后滚筒开始的下风侧区域,粉尘浓度发生两次急剧的降低,由此提出了"三阶梯现象",用以指导现场工作和防尘作业。  相似文献   

12.
针对目前井下巷道内综掘工作面产尘量大,煤尘浓度高,降尘效率低的实际现状,探讨了配有附壁风筒的综掘工作面旋流风幕抽吸控尘的新型降尘方式,建立气体-粉尘颗粒两相流动的数学模型,利用Fluent对巷道流场进行数值模拟,并分析了风流扩散规律、粉尘分布规律以及影响粉尘分布规律的因素.模拟结果显示,综掘面旋流风幕抽吸控尘系统可在机掘工作面的有限空间内形成一个具有屏蔽作用的旋转风幕,将粉尘基本封闭在距掘进面0~3m的范围内.抽风口距离掘进面越近,高浓度粉尘存在范围和巷道中的粉尘浓度越小;增加抽风口个数可以提高除尘效率.  相似文献   

13.
为了研究综放工作面转载破碎点的粉尘分布特征,对进风顺槽沿程粉尘分布进行了现场实测,得到主要产尘点为转载机机头1 m处、破碎机处和前溜及后溜处.进一步分析了主要产尘点的分散度和粉尘浓度变化规律,结果表明:转载机机头1 m处以5 μm以下呼吸性粉尘为主,PM5粉尘质量浓度呈现先高后低的趋势,PM10粉尘质量浓度变化与之相反,治理时尘源处要以呼吸性粉尘为主,还需关注扩散滞留的可吸人粉尘;破碎机处主要为10 μm以下可吸人粉尘,PM5粉尘质量浓度开始波动较小,一段时间后升高,PM10粉尘质量浓度表现为先高后低的趋势,治理时尘源处要以可吸入粉尘为主,还应关注呼吸性粉尘的扩散;前后溜区域粉尘颗粒分布比较均匀,PM5粉尘质量浓度呈间歇性波动,PM10粉尘质量浓度变化比较平稳,治理时除考虑呼吸性粉尘和可吸人粉尘外,还应注重风流的影响,后溜处还需考虑粉尘粒径分布的多样性.  相似文献   

14.
利用电场粉尘质量浓度分布理论式,计算静电除尘器模型断面粉尘质量浓度分布,证明了静电除尘器在收尘极板附近形成高质量浓度含尘气流区.为了提高电除尘器除尘效率,采用在电除尘器收尘极板末端用吸风口强制收集高质量浓度粉尘气流的方法,对强制收集的高质量浓度粉尘气流进行二级处理.并根据理论电场浓度分布可得到吸风高度与收尘效率的数学关系,最后通过能量守恒定律推导出吸风口均匀吸风时尺寸的计算方法.  相似文献   

15.
针对巷道内皮带输煤过程中粉尘污染的问题,通过巷道内粉尘质量沿程分布测试,并利用数值模拟的方法,分别对不同风速下的粉尘颗粒运移、巷道底板沉积单个粉尘粒子扬尘、输煤皮带粉尘粒子运移进行了模拟.通过对以上3种模拟结果进行分析,得出了不同风速下巷道内皮带输煤系统粉尘运移规律,并与现场实测结果对比基本一致.  相似文献   

16.
综采工作面隔尘空气幕出口角度对隔尘效果的影响   总被引:4,自引:1,他引:3  
综采工作面隔尘空气幕的出口角度是影响其隔尘效果的关键因素之一。利用Fluent计算流体力学软件,以河北金牛能源股份有限公司葛泉矿1528综采工作面为研究对象,对空气幕不同出口角度下综采工作面气流流场及空气幕两侧呼吸性粉尘浓度分布进行数值模拟,分析空气幕出口角度对其隔尘效果的影响。研究结果表明:适当调整空气幕出口角度,使气幕射流倾斜于产尘区,有利于提高空气幕的隔尘效果;并获得了阻止采煤机滚筒割煤时所产生的粉尘向司机工作区扩散的最佳空气幕出口角度,即出口角度在5°~10°范围,隔尘空气幕的工作效率较高,采煤机司机处的粉尘浓度最低,并通过现场试验对数值分析结果进行了验证。  相似文献   

17.
为了对综放工作面转载破碎点提出有效的防尘措施,从宏观上研究PM5和PM10粉尘的分布规律。在进风顺槽内靠近煤壁侧布置10个测点,对PM5和PM10粉尘质量浓度进行实时监测,同时采用数值模拟的方法建立转载破碎点几何模型并解算,将模拟与实测结果进行对比分析并得到了转载破碎点及周围工作空间的整体污染状况。结果表明:转载机周围无论是呼吸性粉尘和还是可吸入粉尘变化都比较稳定且产尘较多,破碎机周围呼吸性粉尘的产尘速率相对较低,但由于扩散较慢使粉尘不断积累;前溜和后溜周围可吸入粉尘的占比相对较高,同时受风流影响,前后溜中部和后溜处粉尘质量浓度升高明显;实测和模拟结果的浓度变化趋势基本相同,而高浓度粉尘主要集中于离地面1 m左右,且一直蔓延到整个进风顺槽和工作面;转载机机头1 m处、破碎机处以及前溜和后溜处是综放工作面进风顺槽转载破碎区域的主要起尘点,且以呼吸性粉尘和可吸入粉尘为主,治理时应高度重视。  相似文献   

18.
为了解决巷道湿喷混凝土作业粉尘污染问题,针对巷道湿喷作业现场的风流场和颗粒场特点,采用κ-ε模型并运用气固两相流理论建立了巷道湿喷作业风流-粉尘运移的数学模型,利用Fluent软件进行了数值模拟,通过与现场实测数据对比,发现模拟结果与实测数据相吻合.结果表明,湿喷产尘口下风侧0~6m区域聚集了大量的高质量浓度粉尘云团,基本扩散至整个巷道断面,最低质量浓度高达12 mg/m3,湿喷产尘口下风侧6 m以后,高质量浓度粉尘云团消失,粉尘逐渐向巷道其他区域分散运移,但局部粉尘质量浓度依然高达30 mg/m3,直至湿喷口下风侧16.4 m以后,粉尘质量浓度迅速降低至3 mg/m3以下.由此提出了“湿喷作业粉尘三区理论”,并提出将参与搅拌、上料等作业程序的设备和人员布置在“可接受粉尘区”为最佳.  相似文献   

19.
为解决大流量工序定点短时测尘结果与工人实际接尘情况存在差距的问题,本文对综放工作面粉尘浓度现场测量,应用全工班呼吸性粉尘监测方法进行测尘。在实测和分析的基础上,采用平均数、标准差、累计百分比等统计学方法对监测结果进行了深入的分析,得出了综放工作面粉尘浓度的分布规律。以一定初速度从滚筒割煤处抛出的粉尘,在风流作用力、重力、底板和煤壁的吸附以及对落尘的反弹作用下沿程扩散。靠近底板和煤壁处的总粉尘浓度沿程分布曲线是双峰型曲线,距底板和煤壁较远处的总粉尘浓度沿程分布曲线是单峰型曲线。按粉尘粒径大小,双峰型总粉尘浓度沿程分布曲线可以分为两个区域,一个是可沉降的大颗粒粉尘为主的区域,另一个是难以沉降的微细颗粒粉尘为主的区域。从而有利于矿山管理者有的放矢地采取防尘措施,减少投资,提高效率,确保劳动者健康。  相似文献   

20.
为准确描述露天矿自卸卡车运输扬尘的动态三维流场,采用动网格技术及离散相模型的粒子跟踪技术的耦合计算方法,模拟不同车速下自卸卡车周围气流与粉尘的分布特征,并进行现场实测。分析结果表明,粘附在路面的积尘是露天矿运输扬尘的发尘源,气流紊动扩散产生的剪切气流和诱导气流是粉尘颗粒飞扬的动因;随着时间的推移,大部分未来得及沉降的粉尘颗粒在卡车后方飞扬,道路粉尘质量浓度为418~956 mg/m~3;随着自卸卡车车速的提高,近地面粉尘质量浓度与扬尘高度均增大。胜利东2号露天矿现场实测显示,运输扬尘污染情况严重,粉尘质量浓度高达1 932.2 mg/m~3,各测试端面的实测值和模拟值相对误差小于6.64%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号