首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Experiments were designed to analyze the relationships between the root-knot nematodeMeloidogyne incognita and resistant tomato and pepper genotypes. From a natural avirulent isolate, near-isogenic nematode lineages were selected with virulence either against the tomatoMi resistance gene or the pepperMe3 resistance gene. Despite the drastic selection pressure used, nematodes appeared unable to overcome the pepperMe1 gene, therefore suggesting some differences in the resistance conferred byMe1 andMe3 in this species. Nematodes virulent onMi-resistant tomatoes were not able to reproduce onMe1-resistant nor onMe3-resistant peppers, and nematodes virulent onMe3-resistant peppers were not able to reproduce onMi-resistant tomatoes nor onMe1-resistant peppers. These results clearly demonstrate the specificity ofM. incognita virulence against resistance genes from both tomato and pepper, and indirectly suggest that gene-for-gene relationships could occur between these two solanaceous crops and the nematode.  相似文献   

2.
Experiments were conducted to determine the effectiveness and profitability of the Mi-resistance gene in tomato in suppressing populations of Meloidogyne javanica in a plastic-house with a natural infestation of the nematode. Experiments were also conducted to test for virulence and durability of the resistance. Monika (Mi-gene resistant) and Durinta (susceptible) tomato cultivars were cropped for three consecutive seasons in non-fumigated or in soil fumigated with methyl bromide at 75 g m–2 and at a cost of 2.44 euros m–2. Nematode densities were determined at the beginning and end of each crop. Yield was assessed in eight plants per plot weekly for 6 weeks. The Pf/Pi values were 0.28 and 21.6 after three crops of resistant or susceptible cultivars, respectively. Growth of resistant as opposed to susceptible tomato cultivars in non-fumigated soil increased profits by 30,000 euros ha–1. The resistant Monika in non-fumigated soil yielded similarly (P > 0.05) to the susceptible Durinta in methyl bromide fumigated soil but the resistant tomato provided a benefit of 8800 euros ha–1 over the susceptible one because of the cost of fumigation. Selection for virulence did not occur, although the nematode population subjected to the resistant cultivar for three consecutive seasons produced four times more eggs than the population on the susceptible one. Such a difference was also shown when the resistant cultivar was subjected to high continuous inoculum pressure for 14 weeks. The Mi-resistance gene can be an effective and economic alternative to methyl bromide in plastic-houses infested with root-knot nematodes, but should be used in an integrated management context to preserve its durability and prevent the selection of virulent populations due to variability in isolate reproduction and environmental conditions.  相似文献   

3.
The reproduction of a Meloidogyne hispanica isolate from Portugal was evaluated in 63 plant species/cultivars, in pot assays at 25?±?2.0°C, on the basis of root gall index (GI) and reproduction factor (Rf?=?final/initial egg density) at 60 days after inoculation. Cultivars of aubergine, bean, beetroot, broccoli, carnation, corn, cucumber, French garlic, lettuce, melon, onion, parsley, pea, potato, spinach, and tobacco and two of cabbage were susceptible (3?≤?GI?≤?5; 1.15?≤?Rf?≤?262.86). Cabbage cv. Bacalan, cauliflower cv. Temporão and pepper cv. Zafiro R2 were hypersusceptible or poor hosts (Rf??2) and pepper cvs. Aurelio and Solero were resistant (0.0?≤?GI?≤?0.4; 0.00?≤?Rf?≤?0.03). The response of the pepper cultivars and the Mi-1 resistant tomato cv. Rossol was also conducted in pots using two inoculum levels and four temperatures, three growth chamber (25?±?2.7°C, 29.3?±?1.8°C and 33.6?±?1.2°C) and one outdoors (24.4?±?8.2°C). At 24.4?±?8.2°C and 25?±?2.7°C, the reproduction on the resistant tomato was significantly lower compared to the susceptible cv. Easypeel. At all temperatures, resistance was evident for the pepper cultivars, despite the fact they were not found to contain any of the Me1, Me3, Me7 and N genes. The eggs obtained on cv. Aurelio at 33.6?±?1.2°C were used to get a selected resistance breaking isolate of M. hispanica that was able to reproduce on the three pepper cultivars. Our results suggest that the initial M. hispanica isolate is a mixture of virulent and avirulent individuals. The pepper cultivars tested, have potential to reduce M. hispanica populations in agro-ecosystems under certain conditions, but they should be used as a part of an integrated management strategy in order to prevent the development of virulent populations.  相似文献   

4.
Tomato is challenged by several pathogens which cause loss of production. One such pathogen is the oomycete Phytophthora infestans which is able to attack all the aerial parts of the plant. Although a wide range of resistance sources are available, genetic control of this disease is not yet successful. Pyramiding R-genes through genetic transformation could be a straightforward way to produce tomato and potato lines carrying durable resistance to P. infestans. In this work the R1 potato gene was transferred into tomato lines. The tomato transgenic lines were analyzed by using q-RT-PCR and progeny segregation to determine the gene copy number. To test the hypothesis that R1 represents a specifically regulated R-gene, transgenic tomato plants were inoculated with P. infestans isolate 88133 and IPO. All the plants containing the R1 gene were resistant to the late blight isolate IPO-0 and susceptible to isolate 88133. These results provide evidence for specific activation of the R1 gene during pathogen challenge. Furthermore, evidence for enhancement of PR-1 gene expression during P. infestans resistance response was obtained.  相似文献   

5.
Root‐knot nematodes (RKNs), Meloidogyne spp., are a major disease problem in solanaceous crops worldwide, including pepper (Capsicum spp.). Genetic control provides an economically and environmentally sustainable protection alternative to soil fumigants. In pepper, resistance to the main RKN species (M. incognita, M. javanica and M. arenaria) is conferred by the major genes (R genes) Me1, Me3 and N. However, RKNs are able to develop virulence, thus endangering the efficiency of R genes. Quantitative resistance (QR) against Meloidogyne spp. is expected to provide an alternative to R genes, or to be combined with R genes, to increase the resistance efficiency and durability in pepper. In order to explore the ability of QR to protect pepper against RKNs, five pepper inbred lines, differing in their QR level, were tested directly, or after combination with the Me1 and Me3 genes, for their resistance to a panel of M. arenaria, M. javanica and M. incognita isolates. The M. arenaria and M. javanica isolates showed low pathogenicity to pepper, unlike the M. incognita isolates. The QR, controlled by the pepper genetic background, displayed a high resistance level with a broad spectrum of action, protecting pepper against Me3‐virulent as well as avirulent M. incognita isolates. The QR was also expressed when combined with the Me1 and Me3 genes, but presented additive genetic effects so that heterozygous F1 hybrids proved less resistant than homozygous inbred lines. The discovery of this QR is expected to provide promising applications for preserving the efficiency and durability of nematode resistance.  相似文献   

6.
Resistant tomato cultivars are an important tool to control Meloidogyne spp., which cause the highest yield losses attributed to plant‐parasitic nematodes. However, the repeated cultivation of Mi resistant cultivars can select virulent populations. In the present study, the susceptible tomato cv. Durinta and the resistant cv. Monika were cultivated from March to July in a plastic greenhouse for 3 years to determine the maximum multiplication rate, maximum nematode density, equilibrium density, relative susceptibility and population growth rate of M. incognita; these were used as proxy indicators of virulence and yield losses. The values of population dynamics and growth rate on the resistant tomato increased year by year and were higher when it was repeatedly cultivated in the same plot compared to when it was alternated with the susceptible cultivar and the level of resistance decreased from very to moderately resistant. The relationship between the nematode density at transplanting (Pi) and the relative yield of tomato fitted to the Seinhorst damage model for susceptible, but not resistant, cultivars. The tolerance limit and the relative minimum yield were 2–4 J2 per 250 cm3 of soil and 0.44–0.48, respectively. The tomato yield did not differ between cultivars at low Pi, but it did at higher Pi values, at which the resistant yielded 50% more than the susceptible. This study demonstrates the utility of population dynamics parameters for the early detection of selection for virulence in Meloidogyne spp., and that three consecutive years were not sufficient to select for a completely virulent population.  相似文献   

7.
Phytophthora capsici causes root, crown, and fruit rot of vegetable and tropical hosts. Cucumber, zucchini, tomato, and pepper fruits were inoculated using 6-mm-diameter agar plugs of P. capsici, incubated in clear plastic boxes at room temperature (25 ± 2°C and 100% relative humidity), and virulence was estimated by measuring the lesion diameter, pathogen growth diameter, and pathogen sporulation density three (cucumber, zucchini) or four (tomato, pepper) days later. When isolates were grouped by genetic cluster, significant differences in virulence were observed on cucumber and zucchini, with isolates belonging to genetic cluster five causing larger lesions than isolates from genetic cluster six. On tomato, no significant differences were observed for isolates grouped by genetic cluster, but isolates from vegetable crops were generally more virulent than isolates from tropical hosts. Isolates from fabaceous hosts sporulated better on cucumber fruits than isolates from solanaceous hosts. Isolates from vegetable hosts sporulated better on zucchini than isolates from tropical hosts. No significant differences in lesion diameter were noted on pepper when isolates were grouped by host family of origin or genetic cluster, but differences in pathogen sporulation were apparent by host family. Our findings suggest that isolate characteristics such as host family of origin and genetic cluster membership may be used to guide initial isolate selection for cucurbit fruit resistance screening. Final isolate selection should incorporate the phenotypic and genetic diversity of P. capsici, including isolates with differing virulence to the host organ of interest.  相似文献   

8.
Root-knot nematodes (Meloidogyne spp.; RKN) are one of the most important pathogens of vegetables in Turkey. Assessing the existing virulent RKN populations is of importance for pathogen mapping in the west Mediterranean region of Turkey. Therefore, 95 populations of RKN were collected from different protected vegetable-growing locations in the region. Pure cultures were obtained and identified by means of species-specific primers. Virulence of the populations against the Mi-1 gene conferring resistance to Meloidogyne incognita, M. javanica and M. arenaria was determined according to their egg masses and gall rating on resistant and susceptible tomato varieties. Results showed that seven populations of M. incognita and six populations of M. javanica were able to overcome the resistance controlled by the Mi-1 gene. The frequency of virulent populations of M. incognita and M. javanica collected from different protected-grown vegetables was 11.7% and 21.4%, respectively. To our knowledge, this is the first report of populations of RKN virulent to the Mi-1 gene in Turkey.  相似文献   

9.
BACKGROUND: The root‐knot nematode, Meloidogyne incognita (Kofoid & White) Chitwood, is an important plant pathogen damaging to tomato. Continuous use of resistant tomato cultivars and nematicides for its effective management might lead to resistance break‐up or nematicide failure. Genetic variability and virulence in M. incognita on susceptible Pusa Ruby tomato were analysed by bioassay, esterase and DNA polymorphism after a 5 year weekly exposure to carbofuran, carbosulfan, cadusafos and triazophos at 0.0125, 0.0250 and 0.0500 µg g?1. Virulence in M. incognita after a 5 year multiplication on resistant tomatoes was assessed. RESULTS: The nematicidal treatments resulted in the development of virulent M. incognita populations. Their invasion potential increased significantly after continuous exposure to low concentrations of the nematicides. Also, growing resistant tomato cultivars for ten successive seasons resulted in a 6.6% increase in the invasion potential. These virulent populations exhibited 1–3 additional esterase and DNA bands compared with untreated populations. CONCLUSION: A 5 year exposure of M. incognita to sublethal concentrations of nematicides or resistant tomato cultivars exerted enough selection pressure to cause genomic alterations for virulence development. Isozyme markers can be used for rapid and precise diagnostics of field populations by advisory services, enabling judicious remedial management decisions. Copyright © 2009 Society of Chemical Industry  相似文献   

10.
Classification of 32 Verticillium dahliae isolates originating from 19 plant species in eight different botanical families to races and determination of host range pathogenicity were carried out. The physiological races of isolates were identified using the two differential tomato cultivars ??Belladonna?? (susceptible to both races 1 and 2 of V. dahliae) and ??Ace 55VF?? (resistant to race 1, susceptible to race 2 of V. dahliae). Among these isolates, 14 were race 2 (43.8%), 12 race 1 (37.5%) and six nonpathogenic (18.7%) on tomato. The host range pathogenicity of isolates was determined using four differential hosts (eggplant, turnip, tomato (Ve ? ) and sweet pepper). Among isolates, five were pathogenic to both eggplant and turnip (15.6%), 21 to eggplant, turnip and tomato (65.6%), five to eggplant, turnip, tomato and sweet pepper (15.6%) and one was pathogenic to eggplant, turnip and sweet pepper (3.2%). The pathogenicity of isolates on the aforementioned five hosts was investigated on the basis of external symptoms and by calculating the relative areas under disease progress curves (relative AUDPC). Results showed that eggplant was the most susceptible, followed by turnip and tomato cv. Belladonna, while sweet pepper and tomato cv. Ace 55VF were less susceptible to all the isolates used. The pathogenicity of isolates varied from highly to mildly virulent on eggplant and turnip while on Belladonna, Ace 55VF and sweet pepper it varied from highly virulent to nonpathogenic. Belladonna exhibited a similar level of susceptibility to races 1 and 2 of V. dahliae, but was more susceptible than Ace 55VF to race 2. Interestingly, the isolates originating from eggplant were clearly more virulent than those originating from tomato and black nightshade on all solanaceous plants tested.  相似文献   

11.
The population structure of Sclerotium rolfsii from autumn‐sown sugar beet crops in Mediterranean‐type climate regions of Chile, Italy, Portugal and Spain was determined by analyses of mycelial compatibility groups (MCGs) and pathogenicity to 11 economically important plant species. Twelve MCGs (i–xii) were identified among 459 S. rolfsii isolates. MCG iii was the most prevalent group in all countries except Italy. MCG i, the most abundant group (64·7% of isolates) was identified in Portugal and Spain. The remaining MCGs were restricted to various regions within one country (ii, vi, ix) or different countries (v), or to specific localities (iv, vii, viii, x, xi, xii). MCGs iv, vii and x each comprised one isolate. Fields extensively sampled in southern Spain were infected with one to three MCGs. Plant species differed in susceptibility to MCG tester isolates with a MCG by species interaction. Cluster analyses allowed selection into five MCG groupings and grouped plant species into species‐groups 1 (broccoli, chickpea, sunflower, tomato) and 2 (cotton, pepper, sugar beet, watermelon). MCG groupings 1 (i, ix), 2 (ii, iii, vi, viii) and 5 (x, xii) were moderately virulent to species‐group 1 and mildly virulent to species‐group 2. MCG groupings 3 (iv, v, xi) and 4 (vii) were mildly virulent to both species‐groups. Across MCG groups, species were rated highly susceptible (chickpea, sunflower), susceptible (cotton, pepper, tomato, watermelon), moderately resistant (broccoli, melon, sugar beet) and resistant (corn, wheat). Establishing the MCG population structure and virulence variability among S. rolfsii isolates should help in the management of sclerotium root rot diseases.  相似文献   

12.
In order to develop a method for discrimination of Corynespora cassiicola isolates pathogenic to sweet pepper among Japanese isolates, this study analysed pathogenic variations of 64 Japanese isolates of C. cassiicola on perilla, cucumber, tomato, aubergine and sweet pepper, and their multigene phylogeny. Japanese isolates were divided into seven pathogenicity groups (PG1–PG7). The virulence of isolates in PG1–PG5 was restricted to perilla, cucumber, tomato, aubergine and sweet pepper, respectively. Isolates in PG6 were virulent to sweet pepper, tomato and aubergine. Isolates in PG7 were avirulent to all tested plants. Multigene phylogenetic analysis of the isolates based on β‐tubulin, translation elongation factor 1‐α, calmodulin and actin genes showed three divergent clusters, MP‐A, MP‐B and MP‐C. These clusters included all isolates in PG1, PG2, PG8 and PG9 (MP‐A), PG3 and PG5 (MP‐B) and PG4 and PG6 (MP‐C). Isolates in PG7 were distributed amongst all clusters. Furthermore, random amplified polymorphic DNA (RAPD) analysis using universal primers, Q17 (5′‐GAAGCCCTTG‐3′) and Q13 (5′‐GGAGTGGACA‐3′), facilitated discrimination of isolates virulent on sweet pepper amongst isolates in MP‐B and MP‐C, respectively. Together, a combination of the multigene analysis and the RAPD technique allowed the discrimination of the isolates virulent to sweet pepper.  相似文献   

13.
Knowledge of pathotype diversity and virulence in local populations of Pyrenophora teres is a prerequisite to screening for durable resistance to net blotch. The current study aimed to quantify the virulence level of Moroccan isolates, identify and designate existing pathotypes, and select resistant genotypes. We developed a method for virulence quantification of P. teres isolates based on a conversion of infection responses into frequencies for use in correspondence analysis. Coordinates of the first axis of this analysis had a virulence spectrum and ranked isolates from virulent to avirulent. Mixed model analysis was also devised for virulence quantification. Coordinates of the first dimension of correspondence analysis were linearly correlated to BLUPs (Best Linear Unbiased Predictors) of the mixed model. A genotype by genotype by environment model (GGE) coupled with cluster analysis differentiated P. teres isolates into ten and nine pathotypes for net- and spot-forms respectively. Populations of these two forms were dissimilar in terms of classes of virulence. For P. teres f. maculata, avirulent, moderately virulent and highly virulent isolates represented one-third of the population, whereas 90% of P. teres f. teres population was composed of avirulent to moderately avirulent isolates. Barley differential sets were subsequently reduced to two new sets that simplified pathotyping through a key code based on resistant or susceptible reactions. Dendrograms of cluster analysis based on GGE analysis depicted the stability of a genotype’s reactions across all isolates, and using only resistant cultivars as sources of resistance to control net blotch disease would, based on this analysis, fail to control all pathotypes. Therefore, we propose an alternative breeding strategy to control net blotch effectively.  相似文献   

14.
Tomato spotted wilt virus (TSWV) has been present in Argentina since 1938 and had limited sweet pepper and tomato production until the introduction of resistant cultivars bearing Tsw and Sw-5b genes. However, the wide use of TSWV-resistant pepper plants in La Plata Horticultural Belt (LPHB) triggered the emergence of resistance-breaking isolates (RB), increasing the economic impact of TSWV in pepper. This work characterized 11 natural RB pepper isolates from LPHB that have overcome the Tsw resistance gene in Capsicum sp. but are unable to break the Sw-5b-mediated resistance in tomato. Phylogenetic analysis of the N gene showed that the LPHB isolates are most closely related to isolates from Asia, indicating that Argentine TSWV isolates might have emerged from the Asian continent. The NSs sequence analysis reinforces the hypothesis that the appearance of an RB phenotype is a consequence of a number of different single amino acid substitutions spread along the NSs gene that lead to multiple independent evolutionary events. These results provide information on the current situation of the tospovirus–pepper/tomato pathosystems in LPHB, which represents a fundamental prerequisite to include these RB isolates in future screening programmes in order to select new and durable sources of resistance to TSWV in pepper.  相似文献   

15.
Verticillium dahliae isolates recovered from a new focus of severe Verticillium wilt of cotton in the northeast of Israel were tested for vegetative compatibility using nitrate non-utilizing (nit) mutants and identified as VCG1, which is a new record in Israel. Other cotton isolates of V. dahliae from the northern and southern parts of the country were assigned to VCG2B and VCG4B, respectively. VCG1 isolates induced severe leaf symptoms, stunting and defoliation of cotton cv. Acala SJ-2, and thus were characterized as the cotton-defoliating (D) pathotype, whereas isolates of VCG2B and VCG4B were confirmed as the earlier described defoliating-like (DL) and non-defoliating (ND) pathotypes, respectively. This is the first record of the D-pathotype in Israel. The host range of representative isolates of each VCG-associated pathotype was investigated using a number of cultivated plants. Overall, the D isolates were more virulent than DL isolates on all tested host plants, but the order of hosts (from highly susceptible to resistant) was the same: okra (Hibiscus esculentus local cultivar), cotton (Gossypium hirsutum cv. Acala SJ2), watermelon (Citrullus lanatus cv. Crimson Sweet), safflower (Carthamus tinctorius cv. PI 251264), sunflower (Helianthus annuum cv. 2053), eggplant (Solanum melongena cv. Black Beauty), and tomato (Lycopersicon esculentum cv. Rehovot 13). The pattern of virulence of ND isolates differed from that of D and DL isolates, so that the former were highly virulent on eggplant but mildly virulent on cotton. Tomato was resistant to all cotton V. dahliae isolates tested. RAPD and specific PCR assays confirmed that the D isolates from Israel were similar to those originating from other countries.  相似文献   

16.
In 1991 serious losses caused byVerticillium wilt were found on two holdings in the Westland glasshouse district in the Netherlands in which theVerticillium resistant tomato cultivars Calypso and Criterium were grown in soilless systems. Isolates from diseased plants were identified asVerticillium albo-atrum.In inoculation experimentsVerticillium resistant tomato cultivars were seriously affected by the new isolates but not by a control isolate. Moneydor, a susceptible cultivar without the Ve gene, was the most seriously diseased by all isolates. The isolates from theVerticillium resistant tomato cultivars were less virulent on the susceptible cultivar than the control isolate.  相似文献   

17.
Many root-knot nematode (RKN) species (Meloidogyne spp.) are polyphagous and cultivated tomato (Solanum lycopersicum) is one of their preferential hosts, leading to significant losses. It is known that the dominant Mi-1.2 gene in tomato confers resistance to the three most important RKN species—Mincognita, Mjavanica, and Marenaria, and minor species—Methiopica, Mhispanica, and Mluci. However, little information is available about resistance of tomatoes carrying this gene to other tomato-infecting RKN species. In this study, resistance conferred by the Mi-1.2 gene/locus was evaluated against populations of 15 Meloidogyne species, employing tomato cultivars Santa Clara (homozygous recessive mi-1.2/mi-1.2, susceptible) and Debora Plus (heterozygous Mi-1.2/mi-1.2, resistant). Debora Plus was susceptible only to Menterolobii and Mhapla, and was resistant to the other Brazilian populations of Marenaria, Methiopica, Mexigua, Mhispanica, Mincognita, Minornata, Mizalcoensis Mjavanica, Mkonaensis, Mluci, Mmorocciensis, Mparanaensis, and Mpetuniae. Mi-1.2 is located on tomato chromosome 6 within a cluster of seven homologous genes of the nucleotide-binding site leucine-rich repeat (NBS-LRR) family; further research is required to confirm if this multiple Meloidogyne spp. resistance phenotype is controlled exclusively by Mi-1.2 or by combined action of other closely linked genes. This evaluation of resistance of the Debora Plus cultivar to several Meloidogyne species suggests that the Mi-1.2 gene/locus may reduce losses induced by a wide range of Meloidogyne spp. Further studies using additional resistant cultivars and other populations of Meloidogyne spp. are needed to confirm these results.  相似文献   

18.
The differential genotypes R1, R10 and R11, as originally defined by Black, were crossed with R-gene-free cultivars and the progenies divided into two subpopulations comprising those which had inherited the R-gene and those which had not. The underlying level of field resistance of the two groups was compared in a field trial in which they were inoculated with an isolate that could overcome the relevant R-genes. The R-gene-bearing group was significantly ( P  < 0·001) more resistant than the R-gene-free group, with mean scores over four dates in 2000 of 4·86 and 4·09, respectively, on a 1–9 scale of increasing resistance, and of 4·10 and 2·35 on one date in 2001. However, the magnitude of the effect depended on the R-gene and the year of the trial. Data from a progeny of cv. Stirling (with an R-gene and a high level of field resistance) were examined and the same effect of an R-gene found. Fewer of the R-gene-bearing group of clones were highly susceptible, and more were resistant. The most resistant clones always bore the R-gene. It is concluded that increased resistance is conferred by the defeated R-gene or linked genes for field resistance.  相似文献   

19.
Field trials were conducted in a plastic house artificially infested with an avirulent population of Meloidogyne javanica to determine the durability of the resistance mediated by the Mi gene in tomato rootstocks after repeated cultivation for three consecutive years. Treatments included an experimental rootstock cv. PG76 ( Solanum lycopersicum  ×  Solanum sp.), a commercial rootstock cv. Brigeor ( S. lycopersicum  ×  S. habrochaites ), a resistant tomato cv. Monika ( S. lycopersicum ), and a susceptible cv. Durinta ( S. lycopersicum ). Based on the reproduction index (RI: number of eggs per g root on the resistant cultivar divided by number of eggs per g root on the susceptible cultivar × 100), rootstock cv. PG76 responded as highly resistant (RI = 7%) after the first cropping cycle (3·4 nematode generations), showed intermediated resistance (RI = 33%) after the second cropping cycle (3·3 generations), and was fully susceptible (RI = 94%) after the third cycle (3·3 generations). In contrast, rootstock cv. Brigeor and resistant cv. Monika retained intermediate resistance levels (RI = 41 and 25%, respectively) after the third cropping cycle. Virulent nematode populations were rapidly selected from an avirulent one after repeated cultivation of resistant tomatoes under field conditions. Bioassays conducted under controlled conditions confirmed that selection for virulence occurred more rapidly in plots with cv. PG76 followed by Brigeor and Monika. The nematode population in the field not exposed to Mi resistance remained avirulent to Mi genotypes. The genetic background of the resistant rootstocks and the frequency of cropping were critical factors for the appearance of virulent nematode populations. Irrespective of nematode infection, all resistant tomatoes yielded more than the susceptible cultivar.  相似文献   

20.
Nematode reproduction on the nematode-susceptible tomato cv. Durinta grafted onto the Mi-resistance gene tomato rootstock SC 6301 was compared to the Mi-resistance gene tomato cv. Monika in a plastic house infested with Meloidogyne javanica. The ungrafted susceptible cv. Durinta was included as a control for reference. Final soil population densities were lower (P ≤ 0.05) on the resistant than susceptible cultivar but intermediate values were recorded on the rootstock SC 6301. The lowest numbers of eggs per gram root were recorded on the resistant cultivar followed by those on the rootstock; in both cases, they were lower (P < 0.05) than on the susceptible control. Cumulative yield (kilogram per square meter) was higher (P < 0.05) on the resistant than susceptible cultivar whether or not it had been grafted. The rootstock SC 6301 provided an intermediate resistance response to M. javanica and was less effective than the resistant cultivar in suppressing nematode populations and plant damage under the experimental conditions of this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号