首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The effects of long-term fertilization on pools of soil organic carbon(SOC)have been well studied,but limited information is available on the oxidizable organic carbon(OOC)fractions,especially for the Loess Plateau in China.We evaluated the effects of a 15-year fertilization on the OOC fractions(F1,F2,F3 and F4)in the 0–20 and 20–40 cm soil layers in flat farmland under nine treatments(N(nitrogen,urea),P(phosphorus,monocalcium phosphate),M(organic fertilizer,composted sheep manure),N+P(NP),M+N(MN),M+P(MP),M+N+P(MNP),CK(control,no fertilizer)and bare land(BL,no crops or fertilizer)).SOC content increased more markedly in the treatment containing manure than in those with inorganic fertilizers alone.F1,F2,F4 and F3 accounted for 47%,27%,18% and 8% of total organic carbon,respectively.F1 was a more sensitive index than the other C fractions in the sensitivity index(SI)analysis.F1 and F2 were highly correlated with total nitrogen(TN)and available nitrogen(AN),F3 was negatively correlated with p H and F4 was correlated with TN.A cluster analysis showed that the treatments containing manure formed one group,and the other treatments formed another group,which indicated the different effects of fertilization on soil properties.Long-term fertilization with inorganic fertilizer increased the F4 fraction while manure fertilizer not only increased labile fractions(F1)in a short time,but also increased passive fraction(F4)over a longer term.The mixed fertilizer mainly affected F3 fraction.The study demonstrated that manure fertilizer was recommended to use in the farmland on the Loess Plateau for the long-term sustainability of agriculture.  相似文献   

2.
High salinity in soil can prevent root growth of most plants. To investigate soil salinity dynamics under drip irrigation with mulch film(DI) and its effects on cotton root length, we conducted field experiments in saline soil based on a monolith method using flooding irrigation with mulch film(FI) as a control at the Korla Experimental Station of the Xinjiang Academy of Agricultural Sciences, China in 2009 and 2010. The results showed that the total root length decreased 120 days after sowing(DAS) under DI, and was mainly centered in the 0–30 cm soil layer and at distances of 30–70 cm from the drip-lines. There was almost complete overlap in the area of root length decline and salt accumulation. In the soil depth of 0–30 cm and at distances of 30–70 cm from the drip-lines at 110 to 160 DAS in 2009 and 171 DAS in 2010, the electrical conductivity(EC) in all soil samples was at least 3 mS/cm and in some cases exceeded 5 mS/cm under DI treatment. However, EC barely exceeded 3 mS/cm and no reduc- tion in root length was observed under FI treatment. Correlation analysis of soil EC and root length density indicated that the root length declined when the soil EC exceeded 2.8 mS/cm. The main reason for the decrease of root length in cotton under DI was localized accumulation of salinity.  相似文献   

3.
Functional structure and diversity of soil free-living nematodes in a desert environment depend on plant gender and sampling site.The objective of this study was to compare the composition,abundance and tropic group of soil free-living nematodes in the upper 0–10 cm soil layer under the male and female Acanthosicyos horridus Welw.ex Hook.f.plants and in the inter-shrub open areas(control)in the Namib Desert,Namibia in April 2015.Soil moisture,organic matter(OM)and pH was also analyzed.Free-living nematodes were extracted from 100 g soil using the Baermann funnel procedure,and total number of nematodes was counted under a microscope.Community composition and diversity of soil free-living nematodes were analyzed using 18S rDNA sequences.Results indicated that a total of 67 groups,including 64 species,2 genera and 1 family were identified.Feeding behavior of 58 species were identified as follows:15 bacteria-feeding species,12 fungi-feeding species,10 plant-parasite species,5 omnivorous-predator species,8 animal-parasite species,5 invertebrate-parasite species and 3 non-free-living nematodes,known as marine species.Moreover,soil free-living nematodes were found to be affected by sampling locations and plant gender,and community composition and density of these nematodes were strongly influenced by soil OM content.Result confirmed that spatial location and plant cover were main factors influencing the diversity of soil free-living nematodes.Moreover,molecular tools were found to be very useful in defining the richness of soil non-free-living nematodes.In conclusion,the results elucidated the importance of biotic variables in determining the composition and abundance of soil free-living nematodes in the Namib Desert,Namibia.  相似文献   

4.
A long-term fertilization experiment was set up in northern Xinjiang, China to evaluate the dynamics of crop production and soil organic carbon(SOC) from 1990 to 2012 with seven fertilization treatments. The seven treatments included an unfertilized control(CK) and six different combinations of phosphorus(P), potassium(K), nitrogen(N), straw(S) and animal manure(M). The balanced fertilization treatments had significantly(P0.05) higher average yields than the unbalanced ones. The treatment with 2/3 N from potassium sulfate(NPK) and 1/3 N from farmyard manure(NPKM) had a higher average yield than the other treatments. The average yields(over the 23 years) in the treatments of NPK, and urea, calcium superphosphate(NP) did not differ significantly(P0.05) but were higher than that in the treatment with urea and potassium sulfate(NK; P0.05). The results also show that the highest increases in SOC(P0.05) occurred in NPKM with a potential increase of 1.2 t C/(hm~2·a). The increase in SOC was only 0.31, 0.30 and 0.12 t C/(hm~2·a) for NPKS(9/10 N from NPK and 1/10 N from straw), NPK and NP, respectively; and the SOC in the NP, NK and CK treatments were approaching equilibrium and so did not rise or fall significantly over the 23-year experiment. A complete NPK plus manure fertilization program is recommended for this extremely arid region to maximize both yields and carbon sequestration.  相似文献   

5.
土壤中烟草根黑腐病菌的实时定量PCR检测技术研究   总被引:1,自引:0,他引:1  
 Thielaviopsis basicola is a soil-borne plant pathogen which causes root rot disease in tobacco plants. Detection and monitoring of T. basicolain soil is of great significance to control this disease. Based on the differences in internal transcribed spacer (ITS) sequences of T. basicola and other fungal pathogens, a specific primer pair Tb1/Tb2 for T. basicolawas developed. The results showed that the primer pair gave a single amplicon of 330 bp from T. basicola and revealed no undesirable cross-reaction with other seven soil-borne pathogen isolates and three tobacco rhizosphere dominant fungi isolates. With a series of 10-fold genomic DNA dilutions of T. basicola, the detection limit of 1 pg/μL in conventional PCRand100 fg/μL in real-time quantitative PCR was achieved. With DNA from the soil inoculated with different numbers of T. basicola conidia, the detection limit was 10 conidia per reaction in conventional PCR and 0.4 conidia per reaction in real-time quantitative PCR.  相似文献   

6.
ManHou XU 《干旱区科学》2015,7(2):189-204
Climate warming and livestock grazing are known to have great influences on alpine ecosystems like those of the Qinghai-Tibetan Plateau(QTP) in China. However, it is lacking of studies on the effects of warming and grazing on plant and soil properties in these alpine ecosystems. In this study, we reported the related research from manipulative experiment in 2010–2012 in the QTP. The aim of this study was to investigate the individual and combined effects of warming and clipping on plant and soil properties in the alpine meadow ecosystem. Infrared radiators were used to simulate climate warming starting in July 2010, while clipping was performed once in October 2011 to simulate the local livestock grazing. The experiment was designed as a randomized block consisting of five replications and four treatments: control(CK), warming(W), clipping(C) and warming+clipping combination(WC). The plant and soil properties were investigated in the growing season of the alpine meadow in 2012. The results showed that W and WC treatments significantly decreased relative humidity at 20-cm height above ground as well as significantly increases air temperature at the same height, surface temperature, and soil temperature at the depth of 0–30 cm. However, the C treatment did not significantly decrease soil moisture and soil temperature at the depth of 0–60 cm. Relative to CK, vegetation height and species number increased significantly in W and WC treatment, respectively, while vegetation aboveground biomass decreased significantly in C treatment in the early growing season. However, vegetation cover, species diversity, belowground biomass and soil properties at the depth of 0–30 cm did not differ significantly in W, C and WC treatments. Soil moisture increased at the depth of 40–100 cm in W and WC treatments, while belowground biomass, soil activated carbon, organic carbon and total nitrogen increased in the 30–50 cm soil layer in W, C and WC treatments. Although the initial responses of plant and soil properties to experimental warming and clipping were slow and weak, the drought induced by the downward shift of soil moisture in the upper soil layers may induce plant belowground biomass to transfer to the deeper soil layers. This movement would modify the distributions of soil activated carbon, organic carbon and total nitrogen. However, long-term data collection is needed to further explain this interesting phenomenon.  相似文献   

7.
Extremely saline soils are very harsh environments for the growth and survival of most plant species, however, halophytes can grow well. The underlying mechanism of halophyte to resist high saline is not well understood by us. This study was conducted at the potash mine near the Lop Nur, China, where the effects of the halophyte Suaeda salsa L. on the saline-alkaline soils and its growth and sustainability were investigated. Four plots(in which the salt encrustation layers were removed), with different soil treatments were evaluated:(1) undisturbed soil, with no additional treatment(T1);(2) the slag soil zone, in which a 40-cm layer of slag was placed on the undisturbed soil surface(T2);(3) slag+sandy soil, in which a 20-cm layer of slag was placed in the lower layer and 20 cm of sandy soil, taken from an area about 70 km away from Lop Nur potash mine, where Tamarix species were growing, was placed in the upper layer(T3); and(4) a 40-cm sandy soil layer taken from the area where Tamarix species were growing was placed on undisturbed soil(T4). Soil nutrient contents increased in the four treatments, but salt content only decreased in the T1 treatment. Salt content in the T4 treatment increased over the two-year period, which may be partly attributed to salt deposition from wind-blown dust within the mine and salt accumulation within the surface soil(0–20 cm) in response to high evaporative demands. The S. salsa plants exhibited greater improvements in growth under the T4 treatment than under the T1, T2, and T3 treatments, which demonstrated that low levels of salinity are beneficial for the growth of this species. The T1 treatment was sustainable because of its low cost and superior soil improvement characteristics. Therefore, S. salsa plants not only reduced soil salinity and increased soil nutrient levels, but also ameliorated the plant growth environment, which would be beneficial for both the ecological restoration of the Lop Nur area and similar areas throughout the world.  相似文献   

8.
Soil erosion on the Loess Plateau of China is effectively controlled due to the implementation of several ecological restoration projects that improve soil properties and reduce soil erodibility. However, few studies have examined the effects of vegetation restoration on soil properties and erodibility of gully head in the gully regions of the Loess Plateau. The objectives of this study were to quantify the effects of vegetation restoration on soil properties and erodibility in this region. Specifically, a control site in a slope cropland and 9 sites in 3 restored land-use types(5 sites in grassland, 3 in woodland and 1 in shrubland) in the Nanxiaohegou watershed of a typical gully region on the Loess Plateau were selected, and soil and root samples were collected to assess soil properties and root characteristics. Soil erodibility factor was calculated by the Erosion Productivity Impact Calculator method. Our results revealed that vegetation restoration increased soil sand content, soil saturated hydraulic conductivity, organic matter content and mean weight diameter of water-stable aggregate but decreased soil silt and clay contents and soil disintegration rate. A significant difference in soil erodibility was observed among different vegetation restoration patterns or land-use types. Compared with cropland, soil erodibility decreased in the restored lands by 3.99% to 21.43%. The restoration patterns of Cleistogenes caespitosa K. and Artemisia sacrorum L. in the grassland showed the lowest soil erodibility and can be considered as the optimal vegetation restoration pattern for improving soil anti-erodibility of the gully heads. Additionally, the negative linear change in soil erodibility for grassland with restoration time was faster than those of woodland and shrubland. Soil erodibility was significantly correlated with soil particle size distribution, soil disintegration rate, soil saturated hydraulic conductivity, water-stable aggregate stability, organic matter content and root characteristics(including root average diameter, root length density, root surface density and root biomass density), but it showed no association with soil bulk density and soil total porosity. These findings indicate that although vegetation destruction is a short-term process, returning the soil erodibility of cropland to the level of grassland, woodland and shrubland is a long-term process(8–50 years).  相似文献   

9.
Gravel–sand mulch has been used for centuries to conserve water in the Loess Plateau of northwestern China. In this study, we assessed the influence of long-term(1996–2012) gravel–sand mulching of cultivated soils on total organic carbon(TOC), light fraction organic carbon(LFOC), microbial biomass carbon(MBC), total organic nitrogen(TON), particulate organic carbon(POC), mineral-associated organic carbon(MOC), permanganate-oxidizable carbon(KMn O4-C), and non-KMn O4-C at 0–60 cm depths. Mulching durations were 7, 11 and 16 years, with a non-mulched control. Compared to the control, there was no significant and consistently positive effect of the mulch on TOC, POC, MOC, KMn O4-C and non-KMn O4-C before 11 years of mulching, and these organic C fractions generally decreased significantly by 16 years. LFOC, TON and MBC to at a 0–20 cm depth increased with increasing mulching duration until 11 years, and then these fractions decreased significantly between 11 and 16 years, reaching values comparable to or lower than those in the control. KMn O4-C was most strongly correlated with the labile soil C fractions. Our findings suggest that although gravel–sand mulch may conserve soil moisture, it may also lead to long-term decreases in labile soil organic C fractions and total organic N in the study area. The addition of manure or composted manure would be a good choice to reverse the soil deterioration that occurs after 11 years by increasing the inputs of organic matter.  相似文献   

10.
茄科蔬菜立枯丝核菌的融合群鉴定   总被引:3,自引:0,他引:3  
 Sixty-five samples were collected from rhizosphere soil, hot pepper and tomato plants showing damping-off, root rot and stem rot in Taian, Shouguang of Shandong province and Zhouzhi, Taibai of Shaanxi province. Thirty-nine Rhizoctonia solani isolates were obtained from these samples. The results of anastomosis group (AG) identification and sequence analysis of 5.8S rDNA-ITS of the isolates showed that thirty-six isolates (92.3%) belonged to AG-4, while only three (7.7%) belonged to AG-5. The isolates of AG4 could further be divided into two subgroups of AG4-HG-Ⅰ and AG4-HG-Ⅲ. The 5.8S rDNA-ITS sequences of the selected isolates of the two subgroups had the 99%-100% identity with standard isolates of AG4-HG-Ⅰ and AG4-HG-Ⅲ (from GenBank). Among the analyzed isolates, AG4-HG-Ⅰ subgroup was the dominant with the frequency of 79.5%. Subgroup AG-4-HG-Ⅲ with the frequency of 12.8% was the second. This is the first report that subgroup AG4-HG-Ⅲ of R. solani isolated from Solanaceae vegetable crops in China.  相似文献   

11.
BACKGROUND: Many California grape growers use preplant fumigation to ensure uniform and healthy grapevine establishment in replant situations. A field study was conducted to evaluate the performance of subsurface drip‐applied chemical alternatives to methyl bromide on plant‐parasitic nematodes, plant vigor and fruit yield during the 6 year period following replanting. RESULTS: Subsurface drip fumigation with 1,3‐dichloropropene plus chloropicrin and with iodomethane plus chloropicrin had generally similar nematicide activity as methyl bromide in three grape types, while sodium azide was less effective. The combination of 1,3‐dichloropropene plus chloropicrin enhanced vine vigor similarly to methyl bromide. However, all plots treated with alternative fumigants produced less fruit yield than methyl bromide over the 4 years of evaluation. CONCLUSION: Subsurface drip fumigation with alternative chemicals to methyl bromide generally provided adequate management of plant‐parasitic nematodes during the vine establishment period. However, further research is required to increase the performance of alternative chemicals against other components of the replant problem, as grape yield in vines grown in the alternative treatments was lower than in methyl bromide. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
The effect of 24 treatment combinations of cultures of Streptomyces costaricanus sp. nov. (ATCC55274), Bacillus thuringiensis (ATCC55273) and a strain of Paecilomyces marquandii, nematicide (cadusaphos), and/or wheat mash on growth and response of potted banana plants (Musa AAA) and populations of Radopholus similis, Helicotylenchus multicinctus and free living nematodes were studied in Río Frío, Costa Rica. The best plant responses (height, leaf numbers, healthy root weight), lowest numbers of plant parasitic nematodes and highest numbers of free living nematodes were observed for treatments containing wheat as a component. Two treatments, viz. wheat + Streptomyces costaricanus (200-ml culture) and wheat + P. marquandii (200-ml culture), gave the overall best results. Numbers of free living nematodes increased up to 1500-fold only for treatments containing wheat. Significant positive correlations existed between numbers of free living nematodes and shoot weight, healthy root biomass, plant height, and leaf numbers. Non-wheat treatments, including nematicide only, gave the poorest responses in general. Observations of nematodes sampled 50 days following planting in wheat-containing treatments showed most of the free-living nematodes ( 90%) to be infected by nematophagous fungi (species not recorded). The results show that an organic amendment to soil, with or without a microbial component, can be an effective inducer of processes that regulate plant-parasitic nematode populations in soil.  相似文献   

13.
安徽省潜山县栝蒌根结线虫发生危害及大田药效试验   总被引:3,自引:0,他引:3  
为了有效防治栝蒌根结线虫,调查了安徽省潜山县栝蒌根结线虫及其发生,并分析了栝蒌根围土壤线虫的组成。通过线虫形态学鉴定,认为潜山栝蒌上的根结线虫为Meloidogyne incognita。栝萎根围土壤中有口针线虫占调查总量的50.7%,根结线虫2龄幼虫(J2)占31.8%。对当年栝萎J2在土壤表、中、下层的分布和年发生调查结果表明,J2在各层的分布量因月份不同而不同,并分别于3月初到9月中旬问出现2次虫口高峰;防治试验结果表明,除有机肥外,各试验小区在施药后49天J2虫口相对减退率在89.6%以上;施药后124天,克线丹和1.8%阿维菌素处理的小区增果率为250%~480%,收到很好的防效。  相似文献   

14.
Over two years, six consecutive field experiments were done in which the chemical molluscicide metaldehyde and the nematode biocontrol agent Phasmarhabditis hermaphrodita (Schneider) were applied at the standard field rates to replicated mini-plots successively planted with lettuce, Brussels sprouts, leaf beet and cabbage, to compare the effectiveness of different treatments in reducing slug damage to the crops. Soil samples from each plot were taken prior to the start of the experiments, and then monthly, to assess the populations of slugs, snails, earthworms, nematodes, acarids and collembolans. The experiments were done on the same site and each plot received the same treatment in the six experiments. The six treatments were: (1) untreated controls, (2) metaldehyde pellets, (3 and 4) nematodes applied to the planted area 3 days prior to planting without or with previous application of cow manure slurry, (5) nematodes applied to the area surrounding the planted area 3 days prior to planting, and (6) nematodes applied to the planted area once (only in the first of the six consecutive experiments). Only the metaldehyde treatment and the nematodes applied to the planted area at the beginning of each experiment without previous application of manure significantly reduced slug damage to the plants, and only metaldehyde reduced the number of slugs contaminating the harvested plants. The numbers of slugs, snails and earthworms in soil samples were compared among the six treatments tested: with respect to the untreated controls, the numbers of Deroceras reticulatum (Müller) were significantly affected only in the metaldehyde plots, and the numbers of Arion ater L only in the plots treated with nematodes applied to the planted area 3 days prior to planting without previous application of manure; numbers of snails (Ponentina ponentina (Morelet) and Oxychilus helveticus (Blum)) were not affected by the treatment. The total numbers of all earthworm species and of Lumbricus spp were unaffected by the treatment, but Dendrobaena spp increased significantly in the plots treated with manure. The numbers of nematodes, acarids and collembolans in soil samples were compared between the untreated controls and the treatments with nematodes applied 3 days prior to planting to the planted area or to the surrounding area, without previous application of manure: the treatment had a significant effect on the number of nematodes in soil samples, but acarids and collembolans were unaffected.  相似文献   

15.
Movement and biological activity of 1,3-dichloropropene (1,3-D) and chloropicrin applied through drip irrigation in raised beds was investigated at three locations in the southeastern USA. Tests were conducted in fields with dense populations of nutsedge (Cyperus spp), with one location also having a high level of soil nematodes, both of which served as biological indicators of the distribution of effective concentrations of 1,3-D and chloropicrin. Objectives were (1) to gain a better understanding of 1,3-D and chloropicrin movement and the extent of biological activity outside of the wetted bed area, and (2) to examine the effect of application rate, application concentration and subsequent irrigation events on movement and activity of 1,3-D and chloropicrin. InLine, an emulsifiable concentrate containing 60.8% w/w 1,3-D and 33.3% w/w chloropicrin, was injected into polyethylene mulched beds through the drip tubes and water movement in the beds was visualized by adding a blue dye to the injection system. Gas concentrations of 1,3-D and chloropicrin in soil were measured using Gastec detection tubes at different positions relative to the drip tube at 1-4 days after InLine application. After one week, mulch was removed and nutsedge survival evaluated at different positions in the bed. High concentrations of 1,3-D and chloropicrin were measured at the bed center and midway between the bed center and the shoulder, but concentrations were low at the bed shoulder. Width of nutsedge control was significantly greater than width of water movement. Plant-parasitic nematodes were controlled over the entire bed width, but nutsedge re-emerged at the bed shoulders regardless of treatment. Higher application rates and concentrations of 1,3-D + chloropicrin resulted in higher fumigant concentrations in soil air. Irrigations subsequent to application reduced soil air concentrations of 1,3-D and chloropicrin and increased water movement, as did the use of two drip tubes instead of one. The data show that the pesticidal activity of 1,3-D + chloropicrin extends beyond the waterfront and indicate a significant degree of fumigant activity of emulsifiable 1,3-D + chloropicrin. However, unlike plant-parasitic nematodes, nutsedge could not be controlled over the entire bed width, regardless of rate, concentration and volume of water applied.  相似文献   

16.
人参锈腐病是人参的主要病害,应用生物防治技术对人参质量安全保证和人参的可持续种植具有重要意义。通过离体对峙拮抗筛选试验,从种植人参土壤和其他土壤中分离获得的107株木霉菌中筛选出了5株拮抗效果较好的菌株。应用这些筛选到的菌株的厚垣孢子处理人参苗床,人参的出苗率不受影响。播种后1年,5株木霉处理病情指数都在10以下,对照达到40.69,差异极显著,5株木霉防治效果都在75%以上,木霉菌株间防效差异不显著。播种后2年,5株木霉处理病情指数在13左右,对照达到46.84,差异极显著,5株木霉防治效果在67%以上,木霉菌株间防效差异不显著。  相似文献   

17.
Few plant parasitic nematodes are currently included in the European Union (EU) regulated pest lists. However, many plant parasitic nematodes not present in the EU are known to be damaging and present a risk to Europe. Therefore a study was performed to assess the risk of importing plant parasitic nematodes with the soil attached to plants for planting, with emphasis on plants in pots. Prior to the survey, a list of harmful plant parasitic nematodes not present within Europe was prepared per continent based on a literature review. This resulted in a Risk List of 26 species. Additionally, over a 3‐year period a survey was carried out on plants for planting imported to the Netherlands with adhering soil, focusing on all plant parasitic nematodes and with special attention to the nematodes on the Risk List. A total of 258 soil samples were studied, originating from 54 different plant species and 20 different countries. Despite the small number of samples, several quarantine nematodes and species from the Risk List were detected, including new nematode–plant combinations. This survey illustrates that plants with adhering soil can be a pathway for the introduction of listed nematodes, including those from the Risk List, to the EU/EPPO region. This information might encourage a more risk‐based approach to performing import inspections.  相似文献   

18.
试验表明,用于台湾带土苗木根土浸泡的混合药液(10%二硫氰基甲烷乳油33.3 μg/mL+50%多菌灵可湿性粉剂500.0 μg/mL)中二硫氰基甲烷的稳定性较好,能够满足浸泡除害处理的要求。配制1次药液可以连续处理带土苗木3批次,其中每批苗木根土的线虫杀灭率均可达到100%。如需连续浸泡第4批苗木,则应至少添加5%~10%的药量。讨论了浸泡药液用后残液与淤泥的无害化处理。建议在气温高、光照强且长的夏季,一池药液最多浸泡处理2批次苗木。  相似文献   

19.
 为明确水杨酸(SA)对人参抗人参锈腐病的诱导作用,本研究首先采用琼脂平板法测定了SA对人参锈腐病菌(Cylindrocarpon destructans)生长的影响。然后用SA溶液处理二年生人参移栽苗,温室接种人参锈腐病菌,测定了人参根内防御酶系活性(PAL,CAT,PPO,POD)、β-1,3-葡聚糖酶和几丁质酶活性的动态变化。结果表明:浓度为0~200 mg·L-1 的SA溶液对人参锈腐病菌无直接抑制作用。但SA溶液处理后,人参锈腐病发病率较直接接种处理的下降30%,人参根系PAL、CAT、PPO、POD活性较对照均表现上升趋势,β-1,3-葡聚糖酶和几丁质酶活性也较对照增强,并且经SA诱导后接种锈腐菌的人参体内上述酶活性比只诱导不接种处理上升速度快。这表明SA处理可以改变人参根部相关防御酶的活性,从而提高人参对人参锈腐病的抗性。  相似文献   

20.
The effects of aldicarb on populations of root lesion nematodes (primarily Pratylenchus penetrans ) and on grain yields of spring barley and wheat were examined in the field over 3 years, 1981*83. The incidence of barley net blotch ( Pyrenophora teres ), wheat leaf blotch ( Leptosphaeria nodorum ), and common root rot ( Cochliobolus sativus ) was also recorded in 1982 and 1983. Aldicarb treatments reduced the size of root lesion nematode populations in soil and roots in all years, except in the mid-season soil sample in 1983. The severity of leaf disease was decreased only in 1982, but the incidence of root rot was not significantly affected by the nematticide. Although aldicarb increased cereal grain yields by approximately 15% there was no significant relationship between numbers of root lesion nematodes in roots and soil and fungal disease symptoms on barley and wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号